Chen Jonathan H, Alagappan Muthuraman, Goldstein Mary K, Asch Steven M, Altman Russ B
Department of Medicine, Stanford University, Stanford, CA, USA.
Internal Medicine Residency Program, Beth Israel Deaconess Medical Center, Boston, MA USA.
Int J Med Inform. 2017 Jun;102:71-79. doi: 10.1016/j.ijmedinf.2017.03.006. Epub 2017 Mar 18.
Determine how varying longitudinal historical training data can impact prediction of future clinical decisions. Estimate the "decay rate" of clinical data source relevance.
We trained a clinical order recommender system, analogous to Netflix or Amazon's "Customers who bought A also bought B..." product recommenders, based on a tertiary academic hospital's structured electronic health record data. We used this system to predict future (2013) admission orders based on different subsets of historical training data (2009 through 2012), relative to existing human-authored order sets.
Predicting future (2013) inpatient orders is more accurate with models trained on just one month of recent (2012) data than with 12 months of older (2009) data (ROC AUC 0.91 vs. 0.88, precision 27% vs. 22%, recall 52% vs. 43%, all P<10). Algorithmically learned models from even the older (2009) data was still more effective than existing human-authored order sets (ROC AUC 0.81, precision 16% recall 35%). Training with more longitudinal data (2009-2012) was no better than using only the most recent (2012) data, unless applying a decaying weighting scheme with a "half-life" of data relevance about 4 months.
Clinical practice patterns (automatically) learned from electronic health record data can vary substantially across years. Gold standards for clinical decision support are elusive moving targets, reinforcing the need for automated methods that can adapt to evolving information.
Prioritizing small amounts of recent data is more effective than using larger amounts of older data towards future clinical predictions.
确定不同的纵向历史训练数据如何影响未来临床决策的预测。估计临床数据源相关性的“衰减率”。
我们基于一家三级学术医院的结构化电子健康记录数据,训练了一个临床医嘱推荐系统,类似于Netflix或亚马逊的“购买了A的顾客也购买了B……”产品推荐器。我们使用该系统根据历史训练数据(2009年至2012年)的不同子集,相对于现有的人工编写医嘱集,预测未来(2013年)的入院医嘱。
使用仅一个月的近期(2012年)数据训练的模型预测未来(2013年)住院医嘱比使用12个月的旧数据(2009年)更准确(ROC曲线下面积0.91对0.88,精确率27%对22%,召回率52%对43%,所有P<0.01)。即使是来自旧数据(2009年)的算法学习模型仍然比现有的人工编写医嘱集更有效(ROC曲线下面积0.81,精确率16%,召回率35%)。使用更多纵向数据(2009 - 2012年)进行训练并不比仅使用最近(2012年)的数据更好,除非应用一种衰减加权方案,其数据相关性的“半衰期”约为4个月。
从电子健康记录数据中(自动)学习到的临床实践模式可能会在多年间有很大差异。临床决策支持的金标准是难以捉摸的移动目标,这强化了对能够适应不断变化信息的自动化方法的需求。
对于未来临床预测,优先考虑少量近期数据比使用大量旧数据更有效。