Wang Jonathan X, Sullivan Delaney K, Wells Adam J, Wells Alex C, Chen Jonathan H
Biomedical Informatics, Stanford University School of Medicine, Stanford, CA, USA.
equal contributors.
AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:315-324. eCollection 2019.
Consistent and high quality medical decisions are difficult as the amount of literature, data, and treatment options grow. We developed a model to provide automated physician order decision support suggestions for inpatient care through a feed-forward neural network. Given a patient's current status based on information data-mined and extracted from the Electronic Health Record (EHR), our model predicts clinical orders a physician enters for a patient within 24 hours. As a reference benchmark of real-world standard-of-care clinical decision support, existing manually-curated order sets implemented in the hospital demonstrate precision: 0.21, recall: 0.48, AUROC: 0.75 relative to what clinicians actually order within 24 hours. Our feed-forward model provides an automated, scalable, and robust system that achieves precision: 0.41, recall: 0.61, AUROC: 0.80.
随着医学文献、数据和治疗选择的数量不断增加,做出一致且高质量的医疗决策变得困难。我们开发了一个模型,通过前馈神经网络为住院护理提供自动化的医生医嘱决策支持建议。根据从电子健康记录(EHR)中挖掘和提取的信息给出患者的当前状态,我们的模型预测医生在24小时内为患者输入的临床医嘱。作为现实世界护理标准临床决策支持的参考基准,医院现有的手动整理的医嘱集相对于临床医生在24小时内实际开出的医嘱,其精确率为0.21,召回率为0.48,曲线下面积(AUROC)为0.75。我们的前馈模型提供了一个自动化、可扩展且强大的系统,其精确率为0.41,召回率为0.61,曲线下面积为0.80。