Suppr超能文献

从本地数据中获取决策支持:从过去临床医生的行为中创建自适应医嘱菜单。

Decision support from local data: creating adaptive order menus from past clinician behavior.

机构信息

Laboratory of Computer Science, Massachusetts General Hospital, One Constitution Center, Suite 200, Boston, MA 02129, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States; The Regenstrief Institute for Health Care, 410 W. 10th St, Suite 2000, Indianapolis, IN 46202, United States.

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Stata Center, 32 Vassar St, 32-254, Cambridge, MA 02139, United States.

出版信息

J Biomed Inform. 2014 Apr;48:84-93. doi: 10.1016/j.jbi.2013.12.005. Epub 2013 Dec 16.

Abstract

OBJECTIVE

Reducing care variability through guidelines has significantly benefited patients. Nonetheless, guideline-based Clinical Decision Support (CDS) systems are not widely implemented or used, are frequently out-of-date, and cannot address complex care for which guidelines do not exist. Here, we develop and evaluate a complementary approach - using Bayesian Network (BN) learning to generate adaptive, context-specific treatment menus based on local order-entry data. These menus can be used as a draft for expert review, in order to minimize development time for local decision support content. This is in keeping with the vision outlined in the US Health Information Technology Strategic Plan, which describes a healthcare system that learns from itself.

MATERIALS AND METHODS

We used the Greedy Equivalence Search algorithm to learn four 50-node domain-specific BNs from 11,344 encounters: abdominal pain in the emergency department, inpatient pregnancy, hypertension in the Urgent Visit Clinic, and altered mental state in the intensive care unit. We developed a system to produce situation-specific, rank-ordered treatment menus from these networks. We evaluated this system with a hospital-simulation methodology and computed Area Under the Receiver-Operator Curve (AUC) and average menu position at time of selection. We also compared this system with a similar association-rule-mining approach.

RESULTS

A short order menu on average contained the next order (weighted average length 3.91-5.83 items). Overall predictive ability was good: average AUC above 0.9 for 25% of order types and overall average AUC .714-.844 (depending on domain). However, AUC had high variance (.50-.99). Higher AUC correlated with tighter clusters and more connections in the graphs, indicating importance of appropriate contextual data. Comparison with an Association Rule Mining approach showed similar performance for only the most common orders with dramatic divergence as orders are less frequent.

DISCUSSION AND CONCLUSION

This study demonstrates that local clinical knowledge can be extracted from treatment data for decision support. This approach is appealing because: it reflects local standards; it uses data already being captured; and it produces human-readable treatment-diagnosis networks that could be curated by a human expert to reduce workload in developing localized CDS content. The BN methodology captured transitive associations and co-varying relationships, which existing approaches do not. It also performs better as orders become less frequent and require more context. This system is a step forward in harnessing local, empirical data to enhance decision support.

摘要

目的

通过指南减少护理变异性显著有益于患者。尽管如此,基于指南的临床决策支持(CDS)系统并未广泛实施或使用,往往过时,并且无法解决不存在指南的复杂护理问题。在这里,我们开发并评估了一种补充方法-使用贝叶斯网络(BN)学习根据本地订单输入数据生成自适应、特定于上下文的治疗菜单。这些菜单可用作专家审查的草稿,以最大程度地减少本地决策支持内容的开发时间。这符合美国卫生信息技术战略计划中概述的愿景,该计划描述了一个从自身学习的医疗保健系统。

材料和方法

我们使用贪婪等价搜索算法从 11344 次就诊中学习了四个 50 个节点的特定于域的 BN:急诊室腹痛、住院妊娠、紧急就诊诊所高血压和重症监护病房精神状态改变。我们开发了一种从这些网络生成特定于情况、排序的治疗菜单的系统。我们使用医院模拟方法评估了该系统,并计算了接收器操作员曲线(AUC)下的面积和选择时的平均菜单位置。我们还将该系统与类似的关联规则挖掘方法进行了比较。

结果

平均而言,一个简短的订单菜单包含下一个订单(加权平均长度 3.91-5.83 项)。整体预测能力良好:对于 25%的订单类型,平均 AUC 高于 0.9,总体平均 AUC 为 0.714-0.844(取决于域)。然而,AUC 的方差很大(0.50-0.99)。更高的 AUC 与图中的更紧密聚类和更多连接相关,表明适当的上下文数据的重要性。与关联规则挖掘方法的比较表明,只有最常见的订单具有相似的性能,而随着订单变得不那么频繁,差异会急剧扩大。

讨论与结论

本研究表明,可以从治疗数据中提取本地临床知识以支持决策。这种方法很有吸引力,因为:它反映了本地标准;它使用已经捕获的数据;并且它生成人类可读的治疗-诊断网络,可以由人类专家进行管理,以减少开发本地化 CDS 内容的工作量。BN 方法捕获了传递关系和协变关系,而现有方法则没有。随着订单变得越来越不频繁且需要更多上下文,它的性能也会更好。该系统是利用本地经验数据增强决策支持的重要一步。

相似文献

1
Decision support from local data: creating adaptive order menus from past clinician behavior.
J Biomed Inform. 2014 Apr;48:84-93. doi: 10.1016/j.jbi.2013.12.005. Epub 2013 Dec 16.
2
Patient-tailored prioritization for a pediatric care decision support system through machine learning.
J Am Med Inform Assoc. 2013 Dec;20(e2):e267-74. doi: 10.1136/amiajnl-2013-001865. Epub 2013 Jul 25.
3
OrderRex: clinical order decision support and outcome predictions by data-mining electronic medical records.
J Am Med Inform Assoc. 2016 Mar;23(2):339-48. doi: 10.1093/jamia/ocv091. Epub 2015 Jul 21.
5
An evaluation of clinical order patterns machine-learned from clinician cohorts stratified by patient mortality outcomes.
J Biomed Inform. 2018 Oct;86:109-119. doi: 10.1016/j.jbi.2018.09.005. Epub 2018 Sep 7.
6
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
7
Development of traditional Chinese medicine clinical data warehouse for medical knowledge discovery and decision support.
Artif Intell Med. 2010 Feb-Mar;48(2-3):139-52. doi: 10.1016/j.artmed.2009.07.012. Epub 2010 Feb 1.
8
Incorporating expert knowledge when learning Bayesian network structure: a medical case study.
Artif Intell Med. 2011 Nov;53(3):181-204. doi: 10.1016/j.artmed.2011.08.004. Epub 2011 Sep 29.
9
Predicting inpatient clinical order patterns with probabilistic topic models vs conventional order sets.
J Am Med Inform Assoc. 2017 May 1;24(3):472-480. doi: 10.1093/jamia/ocw136.
10
A mathematical model for interpretable clinical decision support with applications in gynecology.
PLoS One. 2012;7(3):e34312. doi: 10.1371/journal.pone.0034312. Epub 2012 Mar 29.

引用本文的文献

1
Using machine learning to develop smart reflex testing protocols.
J Am Med Inform Assoc. 2024 Jan 18;31(2):416-425. doi: 10.1093/jamia/ocad187.
2
Assessing the use of a clinical decision support tool for pain management in primary care.
JAMIA Open. 2022 Sep 15;5(3):ooac074. doi: 10.1093/jamiaopen/ooac074. eCollection 2022 Oct.
3
Ethics in the History of Medical Informatics for Decision-Making: Early Challenges to Digital Health Goals.
Yearb Med Inform. 2022 Aug;31(1):317-322. doi: 10.1055/s-0042-1742491. Epub 2022 Jun 2.
6
Use, Impact, Weaknesses, and Advanced Features of Search Functions for Clinical Use in Electronic Health Records: A Scoping Review.
Appl Clin Inform. 2021 May;12(3):417-428. doi: 10.1055/s-0041-1730033. Epub 2021 Jul 14.
7
Predicting Inpatient Medication Orders From Electronic Health Record Data.
Clin Pharmacol Ther. 2020 Jul;108(1):145-154. doi: 10.1002/cpt.1826. Epub 2020 Apr 11.
8
Using machine learning to selectively highlight patient information.
J Biomed Inform. 2019 Dec;100:103327. doi: 10.1016/j.jbi.2019.103327. Epub 2019 Oct 29.
10
Neural Networks for Clinical Order Decision Support.
AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:315-324. eCollection 2019.

本文引用的文献

2
Evidence-based medicine in the EMR era.
N Engl J Med. 2011 Nov 10;365(19):1758-9. doi: 10.1056/NEJMp1108726. Epub 2011 Nov 2.
3
Prediction of mortality in very premature infants: a systematic review of prediction models.
PLoS One. 2011;6(9):e23441. doi: 10.1371/journal.pone.0023441. Epub 2011 Sep 8.
4
A method and knowledge base for automated inference of patient problems from structured data in an electronic medical record.
J Am Med Inform Assoc. 2011 Nov-Dec;18(6):859-67. doi: 10.1136/amiajnl-2011-000121. Epub 2011 May 25.
6
An automated technique for identifying associations between medications, laboratory results and problems.
J Biomed Inform. 2010 Dec;43(6):891-901. doi: 10.1016/j.jbi.2010.09.009. Epub 2010 Sep 25.
7
The "meaningful use" regulation for electronic health records.
N Engl J Med. 2010 Aug 5;363(6):501-4. doi: 10.1056/NEJMp1006114. Epub 2010 Jul 13.
9
The relationship between electronic health record use and quality of care over time.
J Am Med Inform Assoc. 2009 Jul-Aug;16(4):457-64. doi: 10.1197/jamia.M3128. Epub 2009 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验