Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14850, USA.
ACS Appl Mater Interfaces. 2009 Apr;1(4):797-803. doi: 10.1021/am800225j.
The conformal deposition of metal nanoparticles (Au, Pd, and Pt) onto natural cellulose fibers using two chemical strategies is reported. The driven mechanism responsible for the high surface coverage of the substrates was identified as the electrostatic interactions between the positively charged cellulose and the either negatively charged nanoparticles or negative metal complex ions. The natural cellulose fibers were rendered cationic by grafting ammonium ions, using an epoxy substitution reaction, to the abundant hydroxyl groups present in cellulose molecules. The first method involved the electrostatic assembly of citrate-stabilized metal nanoparticles directly onto the cationic surfaces of cellulose. The second method involved the adsorption of negative metal complex ions onto the cationic cellulose followed by a reduction reaction. The attained metal nanoparticles bound with cellulose fibers were characterized by electron microscopy (TEM and SEM) and energy-dispersive X-ray spectroscopy (EDX). Both pathways generated metal nanoparticles with high packing densities on the cellulose substrates even when very dilute solutions of metal colloids or metal salts were used. Achieving high surface coverage with low-concentration precursor solutions may open an avenue for the production of flexible catalytic mantles or highly functionalized textile substrates.
本文报道了两种化学策略在天然纤维素纤维上进行金属纳米粒子(金、钯和铂)共形沉积的方法。确定了基底高表面覆盖率的驱动机制是带正电荷的纤维素与带负电荷的纳米粒子或负的金属配合离子之间的静电相互作用。通过在纤维素分子中丰富的羟基上进行环氧取代反应,将铵离子接枝到天然纤维素纤维上,使天然纤维素纤维带正电荷。第一种方法涉及将柠檬酸稳定的金属纳米粒子通过静电组装直接沉积到纤维素的正电荷表面上。第二种方法涉及将负的金属配合离子吸附到带正电荷的纤维素上,然后进行还原反应。与纤维素纤维结合的获得的金属纳米粒子通过电子显微镜(TEM 和 SEM)和能谱(EDX)进行了表征。即使使用非常稀的胶体金属或金属盐溶液,这两种途径都能在纤维素基底上生成具有高堆积密度的金属纳米粒子。用低浓度前体溶液实现高表面覆盖率可能为制备柔性催化覆盖层或高度功能化的纺织基底开辟了一条途径。