National Institute of Standards and Technology, Semiconductor Electronics Division, Gaithersburg, Maryland 20899, USA.
ACS Nano. 2010 Apr 27;4(4):2077-87. doi: 10.1021/nn901676x.
We investigate the formation of unilamellar lipid vesicles (liposomes) with diameters of tens of nanometers by controlled microfluidic mixing and nanoparticle determination (COMMAND). Our study includes liposome synthesis experiments and numerical modeling of our microfluidic implementation of the batch solvent injection method. We consider microfluidic liposome formation from the perspective of fluid interfaces and convective-diffusive mixing, as we find that bulk fluid flow parameters including hydrodynamically focused alcohol stream width, final alcohol concentration, and shear stress do not primarily determine the vesicle formation process. Microfluidic device geometry in conjunction with hydrodynamic flow focusing strongly influences vesicle size distributions, providing a coarse method to control liposome size, while total flow rate allows fine-tuning the vesicle size in certain focusing regimes. Although microfluidic liposome synthesis is relatively simple to implement experimentally, numerical simulations of the mixing process reveal a complex system of fluid flow and mass transfer determining the formation of nonequilibrium vesicles. These results expand our understanding of the microfluidic environment that controls liposome self-assembly and yield several technological advances for the on-chip synthesis of nanoscale lipid vesicles.
我们通过控制微流混合和纳米粒子测定(COMMAND)研究了数十纳米直径的单室脂质体(脂质体)的形成。我们的研究包括脂质体合成实验和我们的批量溶剂注入微流实现的数值建模。我们从流体界面和对流扩散混合的角度考虑微流脂质体的形成,因为我们发现包括流体动力学聚焦酒精流宽度、最终酒精浓度和剪切应力在内的体相流体流动参数并不主要决定囊泡形成过程。微流道几何形状与流体动力学的流动聚焦强烈影响囊泡的尺寸分布,提供了一种控制脂质体尺寸的粗调方法,而总流速允许在某些聚焦状态下微调囊泡的尺寸。尽管微流合成脂质体在实验上相对简单,但混合过程的数值模拟揭示了控制脂质体自组装的复杂流体流动和传质系统,并为纳米级脂质体的芯片合成提供了多项技术进步。