Cardellini Jacopo, Normak Karl, Gerlt Michael, Makasewicz Katarzyna, Seiffert Charlotte, Capasso Palmiero Umberto, Ye Suiying, González Gómez Manuel A, Piñero Yolanda, Rivas José, Bongiovanni Antonella, Bergese Paolo, Arosio Paolo
ETH Zürich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland.
Department of Chemistry "Ugo Schiff," University of Florence, 50019 Florence, Italy.
Adv Healthc Mater. 2025 Feb;14(4):e2403264. doi: 10.1002/adhm.202403264. Epub 2024 Dec 25.
Coating synthetic nanoparticles (NPs) with lipid membranes is a promising approach to enhance the performance of nanomaterials in various biological applications, including therapeutic delivery to target organs. Current methods for achieving this coating often rely on bulk approaches which can result in low efficiency and poor reproducibility. Continuous processes coupled with quality control represent an attractive strategy to manufacture products with consistent attributes and high yields. Here, this concept is implemented by developing an acoustic microfluidic device together with an analytical platform to prepare nanoparticle-vesicle hybrids and quantitatively characterize the nanoparticle coverage using fluorescence-based techniques at different levels of resolution. With this approach polymethyl methacrylate (PMMA) nanoparticles are successfully coated with liposomes and extracellular vesicles (EVs), achieving a high encapsulation efficiency of 70%. Moreover, the approach enables the identification of design rules to control the efficiency of encapsulation by tuning various operational parameters and material properties, including buffer composition, nanoparticle/vesicle ratio, and vesicle rigidity.
用脂质膜包覆合成纳米颗粒(NPs)是一种很有前景的方法,可提高纳米材料在各种生物应用中的性能,包括向靶器官的治疗递送。目前实现这种包覆的方法通常依赖于批量方法,这可能导致效率低下和重现性差。连续过程与质量控制相结合是制造具有一致特性和高产量产品的一种有吸引力的策略。在此,通过开发一种声学微流控装置以及一个分析平台来制备纳米颗粒-囊泡杂合体,并使用基于荧光的技术在不同分辨率水平定量表征纳米颗粒覆盖率,实现了这一概念。通过这种方法,聚甲基丙烯酸甲酯(PMMA)纳米颗粒成功地用脂质体和细胞外囊泡(EVs)包覆,实现了70%的高包封效率。此外,该方法能够通过调整各种操作参数和材料特性(包括缓冲液组成、纳米颗粒/囊泡比率和囊泡刚性)来确定控制包封效率的设计规则。