Suppr超能文献

小脑浦肯野细胞中的树突 Kv3.3 钾通道调节树突钙峰的产生和空间动力学。

Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

机构信息

Department of Physiology, New York University School of Medicine, 522 First Ave., Sixth Floor, New York, NY 10016, USA.

出版信息

J Neurophysiol. 2010 Jun;103(6):3516-25. doi: 10.1152/jn.00982.2009. Epub 2010 Mar 31.

Abstract

Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured Ca(2+) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

摘要

浦肯野细胞树突是可兴奋的结构,具有内在和突触电导,有助于电活动的产生和传播。电压门控钾通道亚基 Kv3.3 在浦肯野细胞的远端树突中表达。然而,这种树突分布的功能相关性尚不清楚。此外,Kv3.3 的突变会导致小鼠运动障碍和人类小脑萎缩和共济失调,这强调了理解这些通道作用的重要性。在这项研究中,我们探讨了这种树突通道表达的功能意义,并比较了野生型和 Kv3.3 敲除小鼠浦肯野细胞树突的兴奋性。尽管静息膜特性正常,但我们证明了 Kv3.3 敲除小鼠浦肯野细胞树突的兴奋性增强。来自局部应用药理学、离子电流电压钳分析以及浦肯野细胞树突 Ca(2+) 峰阈值评估的综合数据表明,Kv3.3 通道在拮抗 Ca(2+) 峰起始中起作用。为了研究树突兴奋性改变的生理相关性,我们测量了响应 climbing 纤维激活时整个树突中的 Ca(2+) 变化。Ca(2+) 信号在 Kv3.3 敲除浦肯野细胞的远端树突中特异性增强,表明树突 Kv3.3 通道在调节电活动和 Ca(2+) 流入远端树突中的传播中起作用。这些发现描述了 Kv3.3 通道在树突中的独特作用,对突触整合、可塑性和人类疾病具有重要意义。

相似文献

引用本文的文献

9
Climbing Fibers Provide Graded Error Signals in Cerebellar Learning.攀爬纤维在小脑学习中提供分级误差信号。
Front Syst Neurosci. 2019 Sep 11;13:46. doi: 10.3389/fnsys.2019.00046. eCollection 2019.

本文引用的文献

3
The origin of the complex spike in cerebellar Purkinje cells.小脑浦肯野细胞复杂峰电位的起源。
J Neurosci. 2008 Jul 23;28(30):7599-609. doi: 10.1523/JNEUROSCI.0559-08.2008.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验