Suppr超能文献

反义寡核苷酸疗法靶向 ATXN3 可改善脊髓小脑性共济失调 3 型的钾通道介导的浦肯野神经元功能障碍。

Antisense Oligonucleotide Therapy Targeted Against ATXN3 Improves Potassium Channel-Mediated Purkinje Neuron Dysfunction in Spinocerebellar Ataxia Type 3.

机构信息

Department of Neurology, University of Michigan, 109 Zina Pitcher Pl., Ann Arbor, MI, 48109, USA.

Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Cerebellum. 2021 Feb;20(1):41-53. doi: 10.1007/s12311-020-01179-7.

Abstract

Spinocerebellar ataxia type 3 (SCA3) is the second-most common CAG repeat disease, caused by a glutamine-encoding expansion in the ATXN3 protein. SCA3 is characterized by spinocerebellar degeneration leading to progressive motor incoordination and early death. Previous studies suggest that potassium channel dysfunction underlies early abnormalities in cerebellar cortical Purkinje neuron firing in SCA3. However, cerebellar cortical degeneration is often modest both in the human disease and mouse models of SCA3, raising uncertainty about the role of cerebellar dysfunction in SCA3. Here, we address this question by investigating Purkinje neuron excitability in SCA3. In early-stage SCA3 mice, we confirm a previously identified increase in excitability of cerebellar Purkinje neurons and associate this excitability with reduced transcripts of two voltage-gated potassium (K) channels, Kcna6 and Kcnc3, as well as motor impairment. Intracerebroventricular delivery of antisense oligonucleotides (ASO) to reduce mutant ATXN3 restores normal excitability to SCA3 Purkinje neurons and rescues transcript levels of Kcna6 and Kcnc3. Interestingly, while an even broader range of K channel transcripts shows reduced levels in late-stage SCA3 mice, cerebellar Purkinje neuron physiology was not further altered despite continued worsening of motor impairment. These results suggest the progressive motor phenotype observed in SCA3 may not reflect ongoing changes in the cerebellar cortex but instead dysfunction of other neuronal structures within and beyond the cerebellum. Nevertheless, the early rescue of both K channel expression and neuronal excitability by ASO treatment suggests that cerebellar cortical dysfunction contributes meaningfully to motor dysfunction in SCA3.

摘要

脊髓小脑性共济失调 3 型(SCA3)是第二常见的 CAG 重复疾病,由 ATXN3 蛋白中谷氨酰胺编码扩展引起。SCA3 的特征是脊髓小脑变性,导致进行性运动协调障碍和早逝。先前的研究表明,钾通道功能障碍是 SCA3 小脑皮质浦肯野神经元放电早期异常的基础。然而,在人类疾病和 SCA3 小鼠模型中,小脑皮质变性通常都不明显,这使得小脑功能障碍在 SCA3 中的作用存在不确定性。在这里,我们通过研究 SCA3 中的浦肯野神经元兴奋性来解决这个问题。在 SCA3 早期阶段的小鼠中,我们确认了先前确定的小脑浦肯野神经元兴奋性增加,并将这种兴奋性与两种电压门控钾 (K) 通道 Kcna6 和 Kcnc3 的转录物减少以及运动障碍相关联。鞘内给予反义寡核苷酸 (ASO) 以减少突变型 ATXN3,可使 SCA3 浦肯野神经元恢复正常的兴奋性,并挽救 Kcna6 和 Kcnc3 的转录物水平。有趣的是,尽管在晚期 SCA3 小鼠中甚至更广泛的 K 通道转录物水平降低,但小脑浦肯野神经元生理学没有进一步改变,尽管运动障碍持续恶化。这些结果表明,在 SCA3 中观察到的进行性运动表型可能不反映小脑皮质的持续变化,而是小脑内部和超越小脑的其他神经元结构的功能障碍。然而,ASO 治疗早期对 K 通道表达和神经元兴奋性的挽救表明,小脑皮质功能障碍对 SCA3 中的运动功能障碍有重要意义。

相似文献

4
Growth hormone rescue cerebellar degeneration in SCA3 transgenic mice.生长激素挽救 SCA3 转基因小鼠的小脑退行性变。
Biochem Biophys Res Commun. 2020 Aug 20;529(2):467-473. doi: 10.1016/j.bbrc.2020.05.116. Epub 2020 Jul 2.

引用本文的文献

6
Physiological Recordings of the Cerebellum in Movement Disorders.小脑在运动障碍中的生理记录。
Cerebellum. 2023 Oct;22(5):985-1001. doi: 10.1007/s12311-022-01473-6. Epub 2022 Sep 7.

本文引用的文献

5
Spinocerebellar ataxia.脊髓小脑共济失调。
Nat Rev Dis Primers. 2019 Apr 11;5(1):24. doi: 10.1038/s41572-019-0074-3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验