Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States.
Med Image Anal. 2010 Jun;14(3):318-31. doi: 10.1016/j.media.2010.02.007. Epub 2010 Mar 6.
In this paper, we analyze Markov Random Field (MRF) as a spatial regularizer in fMRI detection. The low signal-to-noise ratio (SNR) in fMRI images presents a serious challenge for detection algorithms, making regularization necessary to achieve good detection accuracy. Gaussian smoothing, traditionally employed to boost SNR, often produces over-smoothed activation maps. Recently, the use of MRF priors has been suggested as an alternative regularization approach. However, solving for an optimal configuration of the MRF is NP-hard in general. In this work, we investigate fast inference algorithms based on the Mean Field approximation in application to MRF priors for fMRI detection. Furthermore, we propose a novel way to incorporate anatomical information into the MRF-based detection framework and into the traditional smoothing methods. Intuitively speaking, the anatomical evidence increases the likelihood of activation in the gray matter and improves spatial coherency of the resulting activation maps within each tissue type. Validation using the receiver operating characteristic (ROC) analysis and the confusion matrix analysis on simulated data illustrates substantial improvement in detection accuracy using the anatomically guided MRF spatial regularizer. We further demonstrate the potential benefits of the proposed method in real fMRI signals of reduced length. The anatomically guided MRF regularizer enables significant reduction of the scan length while maintaining the quality of the resulting activation maps.
在本文中,我们分析了马尔可夫随机场(MRF)作为 fMRI 检测中的空间正则化方法。fMRI 图像中的低信噪比(SNR)对检测算法提出了严峻挑战,因此需要正则化来实现良好的检测准确性。传统上用于提高 SNR 的高斯平滑常常会导致过度平滑的激活图。最近,有人建议使用 MRF 先验作为替代正则化方法。然而,求解 MRF 的最优配置在一般情况下是 NP 难问题。在这项工作中,我们研究了基于平均场近似的快速推断算法,将其应用于 fMRI 检测的 MRF 先验。此外,我们提出了一种将解剖学信息纳入基于 MRF 的检测框架和传统平滑方法的新方法。直观地说,解剖学证据增加了灰质中激活的可能性,并提高了每个组织类型内的激活图的空间一致性。在模拟数据上使用接收者操作特征(ROC)分析和混淆矩阵分析进行验证表明,使用解剖引导的 MRF 空间正则化器可以显著提高检测准确性。我们进一步在缩短的真实 fMRI 信号中证明了该方法的潜在优势。解剖引导的 MRF 正则化器能够在保持激活图质量的同时显著缩短扫描长度。