Pohl Kilian M, Wells William M, Guimond Alexandre, Kasai Kiyoto, Shenton Martha E, Kikinis Ron, Grimson W Eric L, Warfield Simon K
Artificial Intelligence Laboratory, http://www.ai.mit.edu Massachusetts Institute of Technology, Cambridge MA, USA.
Surgical Planning Laboratory http://www.spl.harvard.edu Harvard Medical School and Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115 USA.
Med Image Comput Comput Assist Interv. 2002 Sep;2488:564-571. doi: 10.1007/3-540-45786-0_70. Epub 2002 Oct 10.
The paper introduces an algorithm which allows the automatic segmentation of multi channel magnetic resonance images. We extended the Expectation Maximization-Mean Field Approximation Segmenter, to include Local Prior Probability Maps. Thereby our algorithm estimates the bias field in the image while simultaneously assigning voxels to different tissue classes under prior probability maps. The probability maps were aligned to the subject using nonrigid registration. This allowed the parcellation of cortical sub-structures including the superior temporal gyrus. To our knowledge this is the first description of an algorithm capable of automatic cortical parcellation incorporating strong noise reduction and image intensity correction.
本文介绍了一种可对多通道磁共振图像进行自动分割的算法。我们扩展了期望最大化 - 平均场近似分割器,以纳入局部先验概率图。由此,我们的算法在图像中估计偏差场,同时在先验概率图下将体素分配到不同的组织类别。通过非刚性配准将概率图与受试者对齐。这使得包括颞上回在内的皮质亚结构能够被分割。据我们所知,这是首次描述一种能够在进行自动皮质分割的同时实现强降噪和图像强度校正的算法。