Suppr超能文献

蛋白酶结构域提高丙型肝炎病毒 NS3-4A 解旋酶的转位效率。

The protease domain increases the translocation stepping efficiency of the hepatitis C virus NS3-4A helicase.

机构信息

Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA.

出版信息

J Biol Chem. 2010 Jun 4;285(23):17821-32. doi: 10.1074/jbc.M110.114785. Epub 2010 Apr 2.

Abstract

Hepatitis C virus (HCV) NS3 protein has two enzymatic activities of helicase and protease that are essential for viral replication. The helicase separates the strands of DNA and RNA duplexes using the energy from ATP hydrolysis. To understand how ATP hydrolysis is coupled to helicase movement, we measured the single turnover helicase translocation-dissociation kinetics and the pre-steady-state P(i) release kinetics on single-stranded RNA and DNA substrates of different lengths. The parameters of stepping were determined from global fitting of the two types of kinetic measurements into a computational model that describes translocation as a sequence of coupled hydrolysis-stepping reactions. Our results show that the HCV helicase moves with a faster rate on single stranded RNA than on DNA. The HCV helicase steps on the RNA or DNA one nucleotide at a time, and due to imperfect coupling, not every ATP hydrolysis event produces a successful step. Comparison of the helicase domain (NS3h) with the protease-helicase (NS3-4A) shows that the most significant contribution of the protease domain is to improve the translocation stepping efficiency of the helicase. Whereas for NS3h, only 20% of the hydrolysis events result in translocation, the coupling for NS3-4A is near-perfect 93%. The presence of the protease domain also significantly reduces the stepping rate, but it doubles the processivity. These effects of the protease domain on the helicase can be explained by an improved allosteric cross-talk between the ATP- and nucleic acid-binding sites achieved by the overall stabilization of the helicase domain structure.

摘要

丙型肝炎病毒(HCV)NS3 蛋白具有解旋酶和蛋白酶两种酶活性,这对于病毒复制至关重要。解旋酶利用 ATP 水解产生的能量分离 DNA 和 RNA 双链。为了了解 ATP 水解如何与解旋酶运动偶联,我们测量了在单链 RNA 和 DNA 底物上不同长度的单次转运动力学和预稳态 Pi 释放动力学的单分子酶促转位-解离动力学。通过将两种类型的动力学测量值全局拟合到描述转位作为一系列偶联水解-转位反应的计算模型中,确定了步长的参数。我们的结果表明,HCV 解旋酶在单链 RNA 上的运动速度比 DNA 快。HCV 解旋酶一次在 RNA 或 DNA 上移动一个核苷酸,由于偶联不完全,并非每个 ATP 水解事件都会产生成功的步长。将解旋酶结构域(NS3h)与蛋白酶-解旋酶(NS3-4A)进行比较表明,蛋白酶结构域的最重要贡献是提高解旋酶的转位效率。对于 NS3h,只有 20%的水解事件导致转位,而 NS3-4A 的偶联接近完美,为 93%。蛋白酶结构域的存在也显著降低了步长,但将其周转率提高了一倍。蛋白酶结构域对解旋酶的这些影响可以通过整体稳定解旋酶结构域结构来实现的 ATP 和核酸结合位点之间的变构交叉通讯得到解释。

相似文献

1
The protease domain increases the translocation stepping efficiency of the hepatitis C virus NS3-4A helicase.
J Biol Chem. 2010 Jun 4;285(23):17821-32. doi: 10.1074/jbc.M110.114785. Epub 2010 Apr 2.
5
The nonstructural protein 3 protease/helicase requires an intact protease domain to unwind duplex RNA efficiently.
J Biol Chem. 2004 Jan 9;279(2):1269-80. doi: 10.1074/jbc.M310630200. Epub 2003 Oct 29.
7
Visualizing ATP-dependent RNA translocation by the NS3 helicase from HCV.
J Mol Biol. 2011 Feb 4;405(5):1139-53. doi: 10.1016/j.jmb.2010.11.034. Epub 2010 Dec 9.
8
ATP binding modulates the nucleic acid affinity of hepatitis C virus helicase.
J Biol Chem. 2003 Jun 27;278(26):23311-6. doi: 10.1074/jbc.M301283200. Epub 2003 Mar 26.
9
The serine protease domain of hepatitis C viral NS3 activates RNA helicase activity by promoting the binding of RNA substrate.
J Biol Chem. 2007 Nov 30;282(48):34913-20. doi: 10.1074/jbc.M707165200. Epub 2007 Oct 5.
10
The interdomain interface in bifunctional enzyme protein 3/4A (NS3/4A) regulates protease and helicase activities.
Protein Sci. 2013 Dec;22(12):1786-98. doi: 10.1002/pro.2378. Epub 2013 Oct 19.

引用本文的文献

1
Dual function of Zika virus NS2B-NS3 protease.
PLoS Pathog. 2023 Nov 27;19(11):e1011795. doi: 10.1371/journal.ppat.1011795. eCollection 2023 Nov.
2
Measurement of ATP utilization in RNA unwinding and RNA chaperone activities by DEAD-box helicase proteins.
Methods Enzymol. 2022;673:53-76. doi: 10.1016/bs.mie.2022.04.004. Epub 2022 May 14.
4
Structure and function of Pif1 helicase.
Biochem Soc Trans. 2017 Oct 15;45(5):1159-1171. doi: 10.1042/BST20170096. Epub 2017 Sep 12.
6
Stepwise nucleosome translocation by RSC remodeling complexes.
Elife. 2016 Feb 19;5:e10051. doi: 10.7554/eLife.10051.
7
ATP dependent NS3 helicase interaction with RNA: insights from molecular simulations.
Nucleic Acids Res. 2015 Oct 15;43(18):8725-34. doi: 10.1093/nar/gkv872. Epub 2015 Sep 10.
8
The linker region of NS3 plays a critical role in the replication and infectivity of hepatitis C virus.
J Virol. 2014 Sep;88(18):10970-4. doi: 10.1128/JVI.00745-14. Epub 2014 Jun 25.
9
UK-1 and structural analogs are potent inhibitors of hepatitis C virus replication.
Bioorg Med Chem Lett. 2014 Jan 15;24(2):609-12. doi: 10.1016/j.bmcl.2013.12.012. Epub 2013 Dec 9.
10
Yeast Pif1 helicase exhibits a one-base-pair stepping mechanism for unwinding duplex DNA.
J Biol Chem. 2013 May 31;288(22):16185-95. doi: 10.1074/jbc.M113.470013. Epub 2013 Apr 17.

本文引用的文献

2
Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism.
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):521-8. doi: 10.1073/pnas.0913380107. Epub 2009 Dec 31.
3
Model-based global analysis of heterogeneous experimental data using gfit.
Methods Mol Biol. 2009;500:335-59. doi: 10.1007/978-1-59745-525-1_12.
4
Rule-based modeling of biochemical systems with BioNetGen.
Methods Mol Biol. 2009;500:113-67. doi: 10.1007/978-1-59745-525-1_5.
5
The NS4A protein of hepatitis C virus promotes RNA-coupled ATP hydrolysis by the NS3 helicase.
J Virol. 2009 Apr;83(7):3268-75. doi: 10.1128/JVI.01849-08. Epub 2009 Jan 19.
6
Establishing a mechanistic basis for the large kinetic steps of the NS3 helicase.
J Biol Chem. 2009 Jan 23;284(4):2512-21. doi: 10.1074/jbc.M805460200. Epub 2008 Nov 14.
7
Hepatitis C viral NS3-4A protease activity is enhanced by the NS3 helicase.
J Biol Chem. 2008 Oct 31;283(44):29929-37. doi: 10.1074/jbc.M804065200. Epub 2008 Aug 22.
8
Two-state model for helicase translocation and unwinding of nucleic acids.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 1):061910. doi: 10.1103/PhysRevE.77.061910. Epub 2008 Jun 13.
9
Coupling of DNA unwinding to nucleotide hydrolysis in a ring-shaped helicase.
EMBO J. 2008 Jun 18;27(12):1718-26. doi: 10.1038/emboj.2008.100. Epub 2008 May 22.
10
Non-hexameric DNA helicases and translocases: mechanisms and regulation.
Nat Rev Mol Cell Biol. 2008 May;9(5):391-401. doi: 10.1038/nrm2394.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验