Suppr超能文献

C 反应蛋白诱导脂蛋白颗粒模拟纳米粒子上的磷脂酰胆碱重排。

C-reactive protein induced rearrangement of phosphatidylcholine on nanoparticle mimics of lipoprotein particles.

机构信息

Department of Chemistry, Portland State University, Portland, Oregon 97207, USA.

出版信息

J Phys Chem B. 2010 Apr 29;114(16):5556-62. doi: 10.1021/jp911617q.

Abstract

Lipid-coated metal nanoparticles are developed here as a mimic of low-density lipoprotein (LDL) particles and used to study C-reactive protein (CRP) binding to highly curved lipid membranes. A 12 nm shift in the localized surface plasmon resonance (LSPR) was observed when CRP was added to the lipid-coated gold nanoparticles. Transmission electron microscopy (TEM) revealed that CRP induced a structural change to the lipids, resulting in clusters of nanoparticles. This clustering provides a visualization of how CRP could cause the aggregation of LDL particles, which is a key step in atherosclerosis. The cluster formation and resultant LSPR shift requires the presence of both CRP and calcium. Fluorescence anisotropy, using a CRP-specific, fluorophore-labeled aptamer confirmed that CRP was bound to the lipid-coated nanoparticles. An increase in the fluorescence anisotropy (Delta r = +0.261 +/- 0.004) of the aptamer probe occurs in the presence of CRP, PC-coated nanoparticles, and calcium. Subsequent sequestration of calcium by EDTA leads to a decrease in the anisotropy (Delta r = -0.233 +/- 0.011); however, there is no change in the LSPR and no change to the cluster structure observed by TEM. This indicates that CRP binds to the PC membrane on the nanoparticle surface reversibly through a calcium bridging mechanism while changing the underlying membrane structure irreversibly as a result of binding.

摘要

这里开发了脂质包覆的金属纳米粒子作为低密度脂蛋白 (LDL) 粒子的模拟物,并用于研究 C 反应蛋白 (CRP) 与高度弯曲的脂质膜的结合。当 CRP 被添加到脂质包覆的金纳米粒子中时,观察到局部表面等离子体共振 (LSPR) 发生了 12nm 的位移。透射电子显微镜 (TEM) 显示 CRP 诱导了脂质的结构变化,导致纳米粒子簇的形成。这种聚集提供了 CRP 如何导致 LDL 粒子聚集的可视化,这是动脉粥样硬化的关键步骤。簇形成和由此产生的 LSPR 位移需要 CRP 和钙的存在。使用 CRP 特异性荧光标记适体的荧光各向异性证实 CRP 与脂质包覆的纳米粒子结合。在存在 CRP、PC 包覆的纳米粒子和钙的情况下,适体探针的荧光各向异性(Delta r = +0.261 +/- 0.004)增加。随后,EDTA 螯合钙会导致各向异性降低(Delta r = -0.233 +/- 0.011);然而,LSPR 没有变化,TEM 也没有观察到簇结构的变化。这表明 CRP 通过钙桥接机制可逆地结合到纳米粒子表面的 PC 膜上,同时由于结合而不可逆地改变底层膜结构。

相似文献

2
C-reactive protein (CRP) aptamer binds to monomeric but not pentameric form of CRP.
Anal Bioanal Chem. 2011 Sep;401(4):1309-18. doi: 10.1007/s00216-011-5174-1. Epub 2011 Jul 2.
3
Direct visualization of electrophoretic mobility shift assays using nanoparticle-aptamer conjugates.
Electrophoresis. 2012 Jan;33(2):348-51. doi: 10.1002/elps.201100308. Epub 2011 Dec 14.
4
Calcium-independent binding of human C-reactive protein to lysophosphatidylcholine in supported planar phospholipid monolayers.
Acta Biomater. 2017 Jan 15;48:206-214. doi: 10.1016/j.actbio.2016.10.043. Epub 2016 Nov 1.
5
Engineered zwitterionic phosphorylcholine monolayers for elucidating multivalent binding kinetics of C-reactive protein.
Acta Biomater. 2016 Aug;40:46-53. doi: 10.1016/j.actbio.2016.02.008. Epub 2016 Feb 9.
8
Detection of C-reactive protein using nanoparticle-enhanced surface plasmon resonance using an aptamer-antibody sandwich assay.
Chem Commun (Camb). 2016 Feb 28;52(17):3568-71. doi: 10.1039/c5cc10486f. Epub 2016 Feb 4.
10
C-reactive protein inhibits in vitro oxidation of low-density lipoprotein.
FEBS Lett. 2006 Oct 2;580(22):5155-60. doi: 10.1016/j.febslet.2006.08.045. Epub 2006 Sep 1.

引用本文的文献

2
Recent advances on the development of plasmon-assisted biosensors for detection of C-reactive protein.
J Mol Struct. 2021 Dec 15;1246:131178. doi: 10.1016/j.molstruc.2021.131178. Epub 2021 Jul 27.
5
Silver Nanoparticles Stable to Oxidation and Silver Ion Release Show Size-Dependent Toxicity In Vivo.
Nanomaterials (Basel). 2021 Jun 8;11(6):1516. doi: 10.3390/nano11061516.
7
Using the Localized Surface Plasmon Resonance of Gold Nanoparticles to Monitor Lipid Membrane Assembly and Protein Binding.
J Phys Chem C Nanomater Interfaces. 2013 Dec 19;117(50):26725-26733. doi: 10.1021/jp406013q.
8
Membrane curvature recognition by C-reactive protein using lipoprotein mimics.
Soft Matter. 2012 Aug 14;8(30):7909-7918. doi: 10.1039/C2SM25779C.
9
Membrane mimetic surface functionalization of nanoparticles: methods and applications.
Adv Colloid Interface Sci. 2013 Sep;197-198:68-84. doi: 10.1016/j.cis.2013.04.003. Epub 2013 May 2.
10
Electrophoretic Mobility of Lipoprotein Nanoparticle Mimics.
Proc IEEE Conf Nanotechnol. 2011:1652-1656. doi: 10.1109/NANO.2011.6144448.

本文引用的文献

1
Reversible, reagentless solubility changes in phosphatidylcholine-stabilized gold nanoparticles.
Nanotechnology. 2008 Mar 19;19(11):115607. doi: 10.1088/0957-4484/19/11/115607. Epub 2008 Feb 18.
3
Templated spherical high density lipoprotein nanoparticles.
J Am Chem Soc. 2009 Feb 4;131(4):1384-5. doi: 10.1021/ja808856z.
4
Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform.
Nano Lett. 2008 Nov;8(11):3715-23. doi: 10.1021/nl801958b. Epub 2008 Oct 22.
5
Gold nanoparticles become stable to cyanide etch when coated with hybrid lipid bilayers.
Chem Commun (Camb). 2008 Jul 14(26):3013-5. doi: 10.1039/b801525b. Epub 2008 May 15.
6
Development of an optical RNA-based aptasensor for C-reactive protein.
Anal Bioanal Chem. 2008 Feb;390(4):1077-86. doi: 10.1007/s00216-007-1736-7. Epub 2007 Dec 9.
7
Preparation of crystalline gold nanoparticles at the surface of mixed phosphatidylcholine-ionic surfactant vesicles.
J Colloid Interface Sci. 2007 Jan 15;305(2):345-51. doi: 10.1016/j.jcis.2006.09.079. Epub 2006 Oct 11.
8
Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
Colloids Surf B Biointerfaces. 2007 Jul 1;58(1):3-7. doi: 10.1016/j.colsurfb.2006.08.005. Epub 2006 Aug 17.
9
Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity.
Langmuir. 2006 Jan 3;22(1):2-5. doi: 10.1021/la0520029.
10
Polymer-supported membranes as models of the cell surface.
Nature. 2005 Sep 29;437(7059):656-63. doi: 10.1038/nature04164.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验