Suppr超能文献

复杂网络中的 Lévy 游走导航:最优传输指数与网络维度之间的独特关系

Lévy Walk Navigation in Complex Networks: A Distinct Relation between Optimal Transport Exponent and Network Dimension.

作者信息

Weng Tongfeng, Small Michael, Zhang Jie, Hui Pan

机构信息

HKUST-DT System and Media Laboratory, Hong Kong University of Science and Technology, HongKong.

The University of Western Australia, Crawley, WA 6009, Australia.

出版信息

Sci Rep. 2015 Nov 25;5:17309. doi: 10.1038/srep17309.

Abstract

We investigate, for the first time, navigation on networks with a Lévy walk strategy such that the step probability scales as pij ~ dij(-α), where dij is the Manhattan distance between nodes i and j, and α is the transport exponent. We find that the optimal transport exponent α(opt) of such a diffusion process is determined by the fractal dimension df of the underlying network. Specially, we theoretically derive the relation α(opt) = df + 2 for synthetic networks and we demonstrate that this holds for a number of real-world networks. Interestingly, the relationship we derive is different from previous results for Kleinberg navigation without or with a cost constraint, where the optimal conditions are α = df and α = df + 1, respectively. Our results uncover another general mechanism for how network dimension can precisely govern the efficient diffusion behavior on diverse networks.

摘要

我们首次研究了采用 Lévy 行走策略在网络上的导航,使得步长概率按 $p_{ij} \sim d_{ij}^{(-\alpha)}$ 缩放,其中 $d_{ij}$ 是节点 $i$ 和 $j$ 之间的曼哈顿距离,$\alpha$ 是传输指数。我们发现这种扩散过程的最优传输指数 $\alpha_{(opt)}$ 由基础网络的分形维数 $d_f$ 决定。特别地,我们从理论上推导出了合成网络的关系 $\alpha_{(opt)} = d_f + 2$,并且我们证明这适用于许多真实世界的网络。有趣的是,我们推导的关系与之前无成本约束或有成本约束的 Kleinberg 导航的结果不同,在 Kleinberg 导航中最优条件分别是 $\alpha = d_f$ 和 $\alpha = d_f + 1$。我们的结果揭示了网络维度如何精确控制不同网络上有效扩散行为的另一种通用机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f692/4658568/e4adb618ae49/srep17309-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验