Weng Tongfeng, Small Michael, Zhang Jie, Hui Pan
HKUST-DT System and Media Laboratory, Hong Kong University of Science and Technology, HongKong.
The University of Western Australia, Crawley, WA 6009, Australia.
Sci Rep. 2015 Nov 25;5:17309. doi: 10.1038/srep17309.
We investigate, for the first time, navigation on networks with a Lévy walk strategy such that the step probability scales as pij ~ dij(-α), where dij is the Manhattan distance between nodes i and j, and α is the transport exponent. We find that the optimal transport exponent α(opt) of such a diffusion process is determined by the fractal dimension df of the underlying network. Specially, we theoretically derive the relation α(opt) = df + 2 for synthetic networks and we demonstrate that this holds for a number of real-world networks. Interestingly, the relationship we derive is different from previous results for Kleinberg navigation without or with a cost constraint, where the optimal conditions are α = df and α = df + 1, respectively. Our results uncover another general mechanism for how network dimension can precisely govern the efficient diffusion behavior on diverse networks.
我们首次研究了采用 Lévy 行走策略在网络上的导航,使得步长概率按 $p_{ij} \sim d_{ij}^{(-\alpha)}$ 缩放,其中 $d_{ij}$ 是节点 $i$ 和 $j$ 之间的曼哈顿距离,$\alpha$ 是传输指数。我们发现这种扩散过程的最优传输指数 $\alpha_{(opt)}$ 由基础网络的分形维数 $d_f$ 决定。特别地,我们从理论上推导出了合成网络的关系 $\alpha_{(opt)} = d_f + 2$,并且我们证明这适用于许多真实世界的网络。有趣的是,我们推导的关系与之前无成本约束或有成本约束的 Kleinberg 导航的结果不同,在 Kleinberg 导航中最优条件分别是 $\alpha = d_f$ 和 $\alpha = d_f + 1$。我们的结果揭示了网络维度如何精确控制不同网络上有效扩散行为的另一种通用机制。