Suppr超能文献

一种用于识别拥堵热点的链路模型方法。

A link model approach to identify congestion hotspots.

作者信息

Bassolas Aleix, Gómez Sergio, Arenas Alex

机构信息

Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona 43007, Spain.

Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, Palma de Mallorca 07122, Spain.

出版信息

R Soc Open Sci. 2022 Oct 26;9(10):220894. doi: 10.1098/rsos.220894. eCollection 2022 Oct.

Abstract

Congestion emerges when high demand peaks put transportation systems under stress. Understanding the interplay between the spatial organization of demand, the route choices of citizens and the underlying infrastructures is thus crucial to locate congestion hotspots and mitigate the delay. Here we develop a model where links are responsible for the processing of vehicles, which can be solved analytically before and after the onset of congestion, and provide insights into the global and local congestion. We apply our method to synthetic and real transportation networks, observing a strong agreement between the analytical solutions and the Monte Carlo simulations, and a reasonable agreement with the travel times observed in 12 cities under congested phase. Our framework can incorporate any type of routing extracted from real trajectory data to provide a more detailed description of congestion phenomena, and could be used to dynamically adapt the capacity of road segments according to the flow of vehicles, or reduce congestion through hotspot pricing.

摘要

当高需求峰值使交通系统承受压力时,拥堵就会出现。因此,了解需求的空间组织、市民的路线选择与基础基础设施之间的相互作用对于确定拥堵热点和缓解延误至关重要。在此,我们开发了一个模型,其中链路负责车辆的处理,该模型在拥堵发生之前和之后都可以通过解析求解,并能洞察全局和局部拥堵情况。我们将我们的方法应用于合成和真实交通网络,观察到解析解与蒙特卡罗模拟之间有很强的一致性,并且与在拥堵阶段12个城市观察到的出行时间有合理的一致性。我们的框架可以纳入从真实轨迹数据中提取的任何类型的路由,以提供对拥堵现象更详细的描述,并且可用于根据车辆流量动态调整路段容量,或通过热点定价减少拥堵。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验