IBM Watson Research Center, Yorktown Heights New York 10598, USA.
Phys Rev Lett. 2010 Feb 5;104(5):050503. doi: 10.1103/PhysRevLett.104.050503.
We ask whether there are fundamental limits on storing quantum information reliably in a bounded volume of space. To investigate this question, we study quantum error correcting codes specified by geometrically local commuting constraints on a 2D lattice of finite-dimensional quantum particles. For these 2D systems, we derive a tradeoff between the number of encoded qubits k, the distance of the code d, and the number of particles n. It is shown that kd{2}=O(n) where the coefficient in O(n) depends only on the locality of the constraints and dimension of the Hilbert spaces describing individual particles. The analogous tradeoff for the classical information storage is k sqrt[d]=O(n).
我们研究了在有限维量子粒子的二维格点上由几何局域交换约束所指定的量子纠错码,以探索在有界空间中可靠地存储量子信息的基本极限。对于这些二维系统,我们推导出了编码量子比特数 k、码距 d 和粒子数 n 之间的权衡关系。结果表明 kd{2}=O(n),其中 O(n)中的系数仅取决于约束的局域性和描述单个粒子的希尔伯特空间的维度。经典信息存储的类似权衡关系为 k sqrt[d]=O(n)。