Gidney Craig, Newman Michael, Brooks Peter, Jones Cody
Google Quantum AI, Santa Barbara, CA, USA.
Google, Sunnyvale, CA, USA.
Nat Commun. 2025 May 14;16(1):4498. doi: 10.1038/s41467-025-59714-1.
One of the biggest obstacles to building a large scale quantum computer is the high qubit cost of protecting quantum information. For two-dimensional architectures, the surface code has long been the leading candidate quantum memory, but can require upwards of a thousand physical qubits per logical qubit to reach algorithmically-relevant logical error rates. In this work, we introduce a hierarchical memory formed from surface codes concatenated into high-density parity check codes. These yoked surface codes are arrayed in a rectangular grid, with parity checks (yokes) measured along each row, and optionally along each column, using lattice surgery. Our construction assumes no additional connectivity beyond a nearest-neighbor square qubit grid operating at a physical error rate of 10. At algorithmically-relevant logical error rates, yoked surface codes use as few as one-third the number of physical qubits per logical qubit as standard surface codes, enabling moderate-overhead fault-tolerant quantum memories in two dimensions.
构建大规模量子计算机的最大障碍之一是保护量子信息的高量子比特成本。对于二维架构,表面码长期以来一直是主要的候选量子存储器,但每个逻辑量子比特可能需要超过一千个物理量子比特才能达到与算法相关的逻辑错误率。在这项工作中,我们引入了一种由级联成高密度奇偶校验码的表面码形成的分层存储器。这些耦合表面码排列成矩形网格,使用晶格手术沿着每行测量奇偶校验(耦合),并且可选地沿着每列测量。我们的结构假设除了以10的物理错误率运行的最近邻方形量子比特网格之外没有额外的连接性。在与算法相关的逻辑错误率下,耦合表面码每个逻辑量子比特使用的物理量子比特数量仅为标准表面码的三分之一,从而在二维中实现了中等开销的容错量子存储器。