Suppr超能文献

用于二维低开销量子计算的低密度奇偶校验(LDPC)级联码。

LDPC-cat codes for low-overhead quantum computing in 2D.

作者信息

Ruiz Diego, Guillaud Jérémie, Leverrier Anthony, Mirrahimi Mazyar, Vuillot Christophe

机构信息

Alice & Bob, 49 Bd du Général Martial Valin, 75015, Paris, France.

Laboratoire de Physique de l'École Normale Supérieure, École Normale Supérieure, Centre Automatique et Systèmes, Mines Paris, Université PSL, CNRS, Inria, Paris, France.

出版信息

Nat Commun. 2025 Jan 26;16(1):1040. doi: 10.1038/s41467-025-56298-8.

Abstract

The main obstacle to large scale quantum computing are the errors present in every physical qubit realization. Correcting these errors requires a large number of additional qubits. Two main avenues to reduce this overhead are (i) low-density parity check (LDPC) codes requiring very few additional qubits to correct errors (ii) cat qubits where bit-flip errors are exponentially suppressed by design. In this work, we combine both approaches to obtain an extremely low overhead architecture. Assuming a physical phase-flip error probability ϵ ≈ 0.1% per qubit and operation, one hundred logical qubits can be implemented on a 758 cat qubit chip, with a total logical error probability per cycle and per logical qubit ϵ ≤ 10. Our architecture also features two major advantages. First, the hardware implementation of the code can be realised with short-range qubit interactions in 2D and low-weight stabilizers, under constraints similar to those of the popular surface code architecture. Second, we demonstrate how to implement a fault-tolerant universal set of logical gates with an additional layer of routing cat qubits stacked on top of the LDPC layer, while maintaining the local connectivity. Furthermore, our architecture benefits from a high capacity of parallelization for these logical gates.

摘要

大规模量子计算的主要障碍是每个物理量子比特实现中存在的错误。纠正这些错误需要大量额外的量子比特。减少这种开销的两条主要途径是:(i)低密度奇偶校验(LDPC)码,只需很少的额外量子比特就能纠正错误;(ii)猫态量子比特,通过设计可指数抑制比特翻转错误。在这项工作中,我们结合了这两种方法,以获得一种开销极低的架构。假设每个量子比特和操作的物理相位翻转错误概率ϵ≈0.1%,在一个758个猫态量子比特的芯片上可以实现100个逻辑量子比特,每个周期和每个逻辑量子比特的总逻辑错误概率ϵ≤10⁻⁹。我们的架构还具有两个主要优点。首先,在类似于流行的表面码架构的约束条件下,该码的硬件实现可以通过二维中的短程量子比特相互作用和低权重稳定器来实现。其次,我们展示了如何在LDPC层之上堆叠额外一层路由猫态量子比特来实现一组容错通用逻辑门,同时保持局部连通性。此外,我们的架构受益于这些逻辑门的高并行化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7054/11762751/ce44348734e1/41467_2025_56298_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验