Caoili Salvador Eugenio C
Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, 547 Pedro Gil Street, Ermita, Manila 1000, Philippines.
J Biomed Biotechnol. 2010;2010:910524. doi: 10.1155/2010/910524. Epub 2010 Mar 30.
To better support the design of peptide-based vaccines, refinement of methods to predict B-cell epitopes necessitates meaningful benchmarking against empirical data on the cross-reactivity of polyclonal antipeptide antibodies with proteins, such that the positive data reflect functionally relevant cross-reactivity (which is consistent with antibody-mediated change in protein function) and the negative data reflect genuine absence of cross-reactivity (rather than apparent absence of cross-reactivity due to artifactual masking of B-cell epitopes in immunoassays). These data are heterogeneous in view of multiple factors that complicate B-cell epitope prediction, notably physicochemical factors that define key structural differences between immunizing peptides and their cognate proteins (e.g., unmatched electrical charges along the peptide-protein sequence alignments). If the data are partitioned with respect to these factors, iterative parallel benchmarking against the resulting subsets of data provides a basis for systematically identifying and addressing the limitations of methods for B-cell epitope prediction as applied to vaccine design.
为了更好地支持基于肽的疫苗设计,完善预测B细胞表位的方法需要根据多克隆抗肽抗体与蛋白质交叉反应的实验数据进行有意义的基准测试,以使阳性数据反映功能相关的交叉反应(这与抗体介导的蛋白质功能变化一致),阴性数据反映真正不存在交叉反应(而不是由于免疫测定中B细胞表位的人为掩盖而导致的明显不存在交叉反应)。鉴于使B细胞表位预测复杂化的多种因素,这些数据是异质的,尤其是那些定义免疫肽与其同源蛋白质之间关键结构差异的物理化学因素(例如,沿肽-蛋白质序列比对的不匹配电荷)。如果根据这些因素对数据进行划分,针对所得数据子集进行迭代并行基准测试可为系统识别和解决应用于疫苗设计的B细胞表位预测方法的局限性提供基础。