压电电纺支架的表征和体外细胞相容性研究。

Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds.

机构信息

Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, 614 Fenster Hall, Newark, NJ 07102-1982, USA.

出版信息

Acta Biomater. 2010 Sep;6(9):3550-6. doi: 10.1016/j.actbio.2010.03.035. Epub 2010 Apr 3.

Abstract

Previous studies have shown that electrical charges influence cell behavior (e.g. enhancement of nerve regeneration, cell adhesion, cell morphology). Thus, piezoelectric scaffolds might be useful for various tissue engineering applications. Fibrous scaffolds were successfully fabricated from permanent piezoelectric poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) by the electrospinning technique. Scanning electron microscopy and capillary flow analyses verified that the fiber mats had an average fiber diameter of 970 +/- 480 nm and a mean pore diameter of 1.7 microm, respectively. Thermally stimulated depolarization current spectroscopy measurements confirmed the piezoelectric property of the PVDF-TrFE fibrous scaffolds by the generation of a spontaneous current with the increase in temperature in the absence of an electric field, which was not detected in the unprocessed PVDF-TrFE powder. Differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction and Fourier transform infrared spectroscopy results showed that the electrospinning process increased the crystallinity and presence of the polar, beta-phase crystal compared with the unprocessed powder. Confocal fluorescence microscopy and a cell proliferation assay demonstrated spreading and increased cell numbers (human skin fibroblasts) over time on PVDF-TrFE scaffolds, which was comparable with tissue culture polystyrene. The relative quantity of gene expression for focal adhesion proteins (measured by real-time RT-PCR) increased in the following order: paxillin < vinculin < focal adhesion kinase < talin. However, no differences could be seen among the TCPS surface and the fibrous scaffolds. Future studies will focus on possible applications of these cytocompatible PVDF-TrFE scaffolds in the field of regenerative medicine.

摘要

先前的研究表明,电荷会影响细胞行为(例如促进神经再生、细胞黏附、细胞形态)。因此,压电支架可能对各种组织工程应用有用。通过静电纺丝技术,成功地从永久压电聚(偏二氟乙烯-三氟乙烯)(PVDF-TrFE)制备出纤维支架。扫描电子显微镜和毛细流动分析验证了纤维垫的平均纤维直径为 970 ± 480nm,平均孔径为 1.7 微米。热刺激去极化电流光谱测量通过在没有电场的情况下随温度升高产生自发电流来确认 PVDF-TrFE 纤维支架的压电特性,而在未加工的 PVDF-TrFE 粉末中未检测到该电流。差示扫描量热法、热重分析、X 射线衍射和傅里叶变换红外光谱结果表明,与未加工的粉末相比,静电纺丝过程增加了结晶度和极性β相晶体的存在。共聚焦荧光显微镜和细胞增殖测定表明,人皮肤成纤维细胞在 PVDF-TrFE 支架上随时间推移而扩展并增加细胞数量,与组织培养聚苯乙烯相当。黏着斑蛋白的基因表达相对量(通过实时 RT-PCR 测量)的增加顺序为:整联蛋白<纽蛋白<黏着斑激酶<桩蛋白。然而,在 TCPS 表面和纤维支架之间没有发现差异。未来的研究将集中在这些细胞相容的 PVDF-TrFE 支架在再生医学领域的潜在应用上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索