Suppr超能文献

计算方法在理解心脏电生理学和心律失常中的应用。

Computational approaches to understand cardiac electrophysiology and arrhythmias.

机构信息

Tri-Institutional MD-PhD Program, Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College/The Rockefeller University/Sloan-Kettering Cancer Institute, Weill Medical College of Cornell University, New York, New York, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H766-83. doi: 10.1152/ajpheart.01081.2011. Epub 2012 Aug 10.

Abstract

Cardiac rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. These impulses spread throughout the cardiac muscle to manifest as electrical waves in the whole heart. Regularity of electrical waves is critically important since they signal the heart muscle to contract, driving the primary function of the heart to act as a pump and deliver blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. For more than 50 years, mathematically based models of cardiac electrical activity have been used to improve understanding of basic mechanisms of normal and abnormal cardiac electrical function. Computer-based modeling approaches to understand cardiac activity are uniquely helpful because they allow for distillation of complex emergent behaviors into the key contributing components underlying them. Here we review the latest advances and novel concepts in the field as they relate to understanding the complex interplay between electrical, mechanical, structural, and genetic mechanisms during arrhythmia development at the level of ion channels, cells, and tissues. We also discuss the latest computational approaches to guiding arrhythmia therapy.

摘要

心脏节律源于单个心肌细胞中离子通道精确计时的开启和关闭所产生的电活动。这些脉冲在心肌中传播,表现为整个心脏的电波。电波的规律性至关重要,因为它们指示心肌收缩,驱动心脏的主要功能作为泵将血液输送到大脑和重要器官。当心律失常期间的电活动出现异常时,泵无法正常工作,大脑无法接收含氧血液,从而导致死亡。50 多年来,基于数学的心脏电活动模型一直被用于改善对正常和异常心脏电功能基本机制的理解。用于理解心脏活动的基于计算机的建模方法特别有帮助,因为它们可以将复杂的涌现行为简化为潜在的关键组成部分。在这里,我们回顾了该领域的最新进展和新观念,因为它们涉及到理解在离子通道、细胞和组织水平上心律失常发展过程中电、机械、结构和遗传机制之间的复杂相互作用。我们还讨论了指导心律失常治疗的最新计算方法。

相似文献

1
Computational approaches to understand cardiac electrophysiology and arrhythmias.计算方法在理解心脏电生理学和心律失常中的应用。
Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H766-83. doi: 10.1152/ajpheart.01081.2011. Epub 2012 Aug 10.
2
Cardiac Na Channels: Structure to Function.心脏钠离子通道:结构与功能。
Curr Top Membr. 2016;78:287-311. doi: 10.1016/bs.ctm.2016.05.001. Epub 2016 Jun 14.
7
Expanding on forty years of reflection.在四十年的思考基础上进行拓展。
J Physiol. 2011 May 1;589(Pt 9):2107-8. doi: 10.1113/jphysiol.2011.209239.
8
Mechanisms of cardiac conduction: a history of revisions.心脏传导机制:修订史。
Am J Physiol Heart Circ Physiol. 2014 Mar 1;306(5):H619-27. doi: 10.1152/ajpheart.00760.2013. Epub 2014 Jan 10.

引用本文的文献

6
Diversity of cells and signals in the cardiovascular system.心血管系统中的细胞和信号的多样性。
J Physiol. 2023 Jul;601(13):2547-2592. doi: 10.1113/JP284011. Epub 2023 Feb 16.

本文引用的文献

9
GPGPU accelerated cardiac arrhythmia simulations.通用图形处理器加速的心律失常模拟
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:724-7. doi: 10.1109/IEMBS.2011.6090164.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验