Center for Visual Computing, Computer Science Department, Stony Brook University, Stony Brook, NY 11794-4400, United States.
J Struct Biol. 2010 Aug;171(2):142-53. doi: 10.1016/j.jsb.2010.03.018. Epub 2010 Apr 4.
Iterative reconstruction algorithms pose tremendous computational challenges for 3D Electron Tomography (ET). Similar to X-ray Computed Tomography (CT), graphics processing units (GPUs) offer an affordable platform to meet these demands. In this paper, we outline a CT reconstruction approach for ET that is optimized for the special demands and application setting of ET. It exploits the fact that ET is typically cast as a parallel-beam configuration, which allows the design of an efficient data management scheme, using a holistic sinogram-based representation. Our method produces speedups of about an order of magnitude over a previously proposed GPU-based ET implementation, on similar hardware, and completes an iterative 3D reconstruction of practical problem size within minutes. We also describe a novel GPU-amenable approach that effectively compensates for reconstruction errors resulting from the TEM data acquisition on (long) samples which extend the width of the parallel TEM beam. We show that the vignetting artifacts typically arising at the periphery of non-compensated ET reconstructions are completely eliminated when our method is employed.
迭代重建算法对三维电子断层扫描(ET)提出了巨大的计算挑战。与 X 射线计算机断层扫描(CT)类似,图形处理单元(GPU)提供了一个负担得起的平台来满足这些需求。在本文中,我们概述了一种针对 ET 的 CT 重建方法,该方法针对 ET 的特殊需求和应用环境进行了优化。它利用了 ET 通常被视为平行束配置这一事实,这允许设计一种高效的数据管理方案,使用整体基于正弦图的表示。与类似的硬件上以前提出的基于 GPU 的 ET 实现相比,我们的方法将速度提高了大约一个数量级,并在几分钟内完成了实际问题大小的迭代 3D 重建。我们还描述了一种新颖的 GPU 适配方法,该方法有效地补偿了由于在(长)样品上进行 TEM 数据采集而导致的重建误差,这些样品扩展了平行 TEM 束的宽度。当使用我们的方法时,我们表明可以完全消除在未补偿的 ET 重建中通常出现在边缘的渐晕伪影。