Suppr超能文献

使用图形处理单元 (GPU) 进行具有长对象补偿的高性能迭代电子断层重建。

High-performance iterative electron tomography reconstruction with long-object compensation using graphics processing units (GPUs).

机构信息

Center for Visual Computing, Computer Science Department, Stony Brook University, Stony Brook, NY 11794-4400, United States.

出版信息

J Struct Biol. 2010 Aug;171(2):142-53. doi: 10.1016/j.jsb.2010.03.018. Epub 2010 Apr 4.

Abstract

Iterative reconstruction algorithms pose tremendous computational challenges for 3D Electron Tomography (ET). Similar to X-ray Computed Tomography (CT), graphics processing units (GPUs) offer an affordable platform to meet these demands. In this paper, we outline a CT reconstruction approach for ET that is optimized for the special demands and application setting of ET. It exploits the fact that ET is typically cast as a parallel-beam configuration, which allows the design of an efficient data management scheme, using a holistic sinogram-based representation. Our method produces speedups of about an order of magnitude over a previously proposed GPU-based ET implementation, on similar hardware, and completes an iterative 3D reconstruction of practical problem size within minutes. We also describe a novel GPU-amenable approach that effectively compensates for reconstruction errors resulting from the TEM data acquisition on (long) samples which extend the width of the parallel TEM beam. We show that the vignetting artifacts typically arising at the periphery of non-compensated ET reconstructions are completely eliminated when our method is employed.

摘要

迭代重建算法对三维电子断层扫描(ET)提出了巨大的计算挑战。与 X 射线计算机断层扫描(CT)类似,图形处理单元(GPU)提供了一个负担得起的平台来满足这些需求。在本文中,我们概述了一种针对 ET 的 CT 重建方法,该方法针对 ET 的特殊需求和应用环境进行了优化。它利用了 ET 通常被视为平行束配置这一事实,这允许设计一种高效的数据管理方案,使用整体基于正弦图的表示。与类似的硬件上以前提出的基于 GPU 的 ET 实现相比,我们的方法将速度提高了大约一个数量级,并在几分钟内完成了实际问题大小的迭代 3D 重建。我们还描述了一种新颖的 GPU 适配方法,该方法有效地补偿了由于在(长)样品上进行 TEM 数据采集而导致的重建误差,这些样品扩展了平行 TEM 束的宽度。当使用我们的方法时,我们表明可以完全消除在未补偿的 ET 重建中通常出现在边缘的渐晕伪影。

相似文献

1
2
Performance improvements for iterative electron tomography reconstruction using graphics processing units (GPUs).
J Struct Biol. 2011 Nov;176(2):250-3. doi: 10.1016/j.jsb.2011.07.017. Epub 2011 Aug 5.
3
High-performance blob-based iterative three-dimensional reconstruction in electron tomography using multi-GPUs.
BMC Bioinformatics. 2012 Jun 25;13 Suppl 10(Suppl 10):S4. doi: 10.1186/1471-2105-13-S10-S4.
4
A matrix approach to tomographic reconstruction and its implementation on GPUs.
J Struct Biol. 2010 Apr;170(1):146-51. doi: 10.1016/j.jsb.2010.01.021. Epub 2010 Feb 2.
7
Evaluation of a multicore-optimized implementation for tomographic reconstruction.
PLoS One. 2012;7(11):e48261. doi: 10.1371/journal.pone.0048261. Epub 2012 Nov 6.
8
Compressed sensing MRI reconstruction from 3D multichannel data using GPUs.
Magn Reson Med. 2017 Dec;78(6):2265-2274. doi: 10.1002/mrm.26636. Epub 2017 Feb 15.
9
GPU accelerated Cartesian GRAPPA reconstruction using CUDA.
J Magn Reson. 2022 Apr;337:107175. doi: 10.1016/j.jmr.2022.107175. Epub 2022 Feb 24.
10
A new approach for 3D reconstruction from bright field TEM imaging: beam precession assisted electron tomography.
Ultramicroscopy. 2011 Aug-Oct;111(9-10):1504-11. doi: 10.1016/j.ultramic.2011.06.002. Epub 2011 Jun 30.

引用本文的文献

1
TiltRec: an ultra-fast and open-source toolkit for cryo-electron tomographic reconstruction.
Bioinformatics. 2025 Mar 4;41(3). doi: 10.1093/bioinformatics/btaf068.
2
Investigating the missing-wedge problem in small-angle X-ray scattering tensor tomography across real and reciprocal space.
J Synchrotron Radiat. 2024 Sep 1;31(Pt 5):1327-1339. doi: 10.1107/S1600577524006702. Epub 2024 Aug 28.
3
Real-time 3D analysis during electron tomography using tomviz.
Nat Commun. 2022 Aug 1;13(1):4458. doi: 10.1038/s41467-022-32046-0.
4
Adaptive multiresolution method for MAP reconstruction in electron tomography.
Ultramicroscopy. 2016 Nov;170:24-34. doi: 10.1016/j.ultramic.2016.08.002. Epub 2016 Aug 6.
5
Gctf: Real-time CTF determination and correction.
J Struct Biol. 2016 Jan;193(1):1-12. doi: 10.1016/j.jsb.2015.11.003. Epub 2015 Nov 19.
6
Compensation of missing wedge effects with sequential statistical reconstruction in electron tomography.
PLoS One. 2014 Oct 3;9(10):e108978. doi: 10.1371/journal.pone.0108978. eCollection 2014.
7
Evaluation of a multicore-optimized implementation for tomographic reconstruction.
PLoS One. 2012;7(11):e48261. doi: 10.1371/journal.pone.0048261. Epub 2012 Nov 6.
8
High-performance blob-based iterative three-dimensional reconstruction in electron tomography using multi-GPUs.
BMC Bioinformatics. 2012 Jun 25;13 Suppl 10(Suppl 10):S4. doi: 10.1186/1471-2105-13-S10-S4.
9
Automatic alignment and reconstruction of images for soft X-ray tomography.
J Struct Biol. 2012 Feb;177(2):259-66. doi: 10.1016/j.jsb.2011.11.027. Epub 2011 Dec 2.
10
A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction.
Ultramicroscopy. 2011 Jul;111(8):1137-43. doi: 10.1016/j.ultramic.2011.03.015. Epub 2011 Apr 1.

本文引用的文献

1
Electron lambda-tomography.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21842-7. doi: 10.1073/pnas.0906391106. Epub 2009 Dec 2.
2
On the efficiency of iterative ordered subset reconstruction algorithms for acceleration on GPUs.
Comput Methods Programs Biomed. 2010 Jun;98(3):261-70. doi: 10.1016/j.cmpb.2009.09.003. Epub 2009 Oct 21.
3
Parallel, distributed and GPU computing technologies in single-particle electron microscopy.
Acta Crystallogr D Biol Crystallogr. 2009 Jul;65(Pt 7):659-71. doi: 10.1107/S0907444909011433. Epub 2009 Jun 20.
4
Performance evaluation of image processing algorithms on the GPU.
J Struct Biol. 2008 Oct;164(1):153-60. doi: 10.1016/j.jsb.2008.07.006. Epub 2008 Jul 24.
5
High performance computing in structural determination by electron cryomicroscopy.
J Struct Biol. 2008 Oct;164(1):1-6. doi: 10.1016/j.jsb.2008.07.005. Epub 2008 Jul 16.
6
Maximum likelihood reconstruction for emission tomography.
IEEE Trans Med Imaging. 1982;1(2):113-22. doi: 10.1109/TMI.1982.4307558.
7
Algebraic reconstruction in CT from limited views.
IEEE Trans Med Imaging. 1989;8(1):50-5. doi: 10.1109/42.20361.
8
Accelerated image reconstruction using ordered subsets of projection data.
IEEE Trans Med Imaging. 1994;13(4):601-9. doi: 10.1109/42.363108.
9
Real-time 3D computed tomographic reconstruction using commodity graphics hardware.
Phys Med Biol. 2007 Jun 21;52(12):3405-19. doi: 10.1088/0031-9155/52/12/006. Epub 2007 May 17.
10
Implementation and performance evaluation of reconstruction algorithms on graphics processors.
J Struct Biol. 2007 Jan;157(1):288-95. doi: 10.1016/j.jsb.2006.08.010. Epub 2006 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验