Suppr超能文献

一种用于高速电子显微镜断层重建的分布式多 GPU 系统。

A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction.

机构信息

The Howard Hughes Medical Institute and W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, 600, 16th Street, CA 94158-2517, USA.

出版信息

Ultramicroscopy. 2011 Jul;111(8):1137-43. doi: 10.1016/j.ultramic.2011.03.015. Epub 2011 Apr 1.

Abstract

Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096(2) × 512 voxels from an input tilt series containing 122 projection images of 4096(2) pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024(2) × 256 voxels from 122 1024(2) pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment.

摘要

大角度倾斜系列的全分辨率电子显微镜断层重建(EMT)需要大量的计算能力。进行多次迭代重建和重新对准的愿望极大地增加了提高重建性能的迫切需求。这促使我们开发了一个分布式多 GPU(图形处理单元)系统,为快速约束迭代重建非常大的三维(3D)体积提供所需的计算能力。参与的 GPU 以并行方式重建体积的片段,然后将这些片段组装起来形成完整的 3D 体积。由于其功能强大且用途广泛,因此选择 NVIDIA 的 CUDA(美国)平台来实现 EMT 重建的 GPU 实现。对于包含 5 个 GTX295 卡提供的 10 个 GPU 的系统,对于包含 122 个 4096(2)像素投影图像的输入倾斜系列的 4096(2)×512 体素的断层图像进行 10 个 SIRT 重建循环,总共需要 1845 秒,其中 1032 秒用于计算,其余为系统开销。同一系统总共只需 39 秒即可重建来自 122 个 1024(2)像素投影的 1024(2)×256 体素。虽然系统开销不小,但性能分析表明,向系统添加额外的 GPU 将导致整体性能稳步提高。因此,该系统可以轻松扩展,为非常大的断层重建生成更高的计算能力,特别是为重建和重新对准的迭代循环提供支持。

相似文献

1
A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction.
Ultramicroscopy. 2011 Jul;111(8):1137-43. doi: 10.1016/j.ultramic.2011.03.015. Epub 2011 Apr 1.
3
Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA.
Med Phys. 2011 Dec;38(12):6775-86. doi: 10.1118/1.3661998.
4
Vectorization with SIMD extensions speeds up reconstruction in electron tomography.
J Struct Biol. 2010 Jun;170(3):570-5. doi: 10.1016/j.jsb.2010.01.008. Epub 2010 Jan 18.
5
6
High-performance blob-based iterative three-dimensional reconstruction in electron tomography using multi-GPUs.
BMC Bioinformatics. 2012 Jun 25;13 Suppl 10(Suppl 10):S4. doi: 10.1186/1471-2105-13-S10-S4.
7
Evaluation of a multicore-optimized implementation for tomographic reconstruction.
PLoS One. 2012;7(11):e48261. doi: 10.1371/journal.pone.0048261. Epub 2012 Nov 6.
8
Multi-GPU Jacobian accelerated computing for soft-field tomography.
Physiol Meas. 2012 Oct;33(10):1703-15. doi: 10.1088/0967-3334/33/10/1703. Epub 2012 Sep 26.
9
A matrix approach to tomographic reconstruction and its implementation on GPUs.
J Struct Biol. 2010 Apr;170(1):146-51. doi: 10.1016/j.jsb.2010.01.021. Epub 2010 Feb 2.
10
Efficient CT Image Reconstruction in a GPU Parallel Environment.
Tomography. 2020 Mar;6(1):44-53. doi: 10.18383/j.tom.2020.00011.

引用本文的文献

2
Primal-dual approach to optical tomography with discretized path integral with efficient formulations.
J Med Imaging (Bellingham). 2017 Jul;4(3):033501. doi: 10.1117/1.JMI.4.3.033501. Epub 2017 Jul 19.
3
gEMpicker: a highly parallel GPU-accelerated particle picking tool for cryo-electron microscopy.
BMC Struct Biol. 2013 Oct 21;13:25. doi: 10.1186/1472-6807-13-25.
4
Evaluation of a multicore-optimized implementation for tomographic reconstruction.
PLoS One. 2012;7(11):e48261. doi: 10.1371/journal.pone.0048261. Epub 2012 Nov 6.
5
High-performance blob-based iterative three-dimensional reconstruction in electron tomography using multi-GPUs.
BMC Bioinformatics. 2012 Jun 25;13 Suppl 10(Suppl 10):S4. doi: 10.1186/1471-2105-13-S10-S4.

本文引用的文献

1
2
A matrix approach to tomographic reconstruction and its implementation on GPUs.
J Struct Biol. 2010 Apr;170(1):146-51. doi: 10.1016/j.jsb.2010.01.021. Epub 2010 Feb 2.
3
Vectorization with SIMD extensions speeds up reconstruction in electron tomography.
J Struct Biol. 2010 Jun;170(3):570-5. doi: 10.1016/j.jsb.2010.01.008. Epub 2010 Jan 18.
4
On the efficiency of iterative ordered subset reconstruction algorithms for acceleration on GPUs.
Comput Methods Programs Biomed. 2010 Jun;98(3):261-70. doi: 10.1016/j.cmpb.2009.09.003. Epub 2009 Oct 21.
5
Dual-axis target mapping and automated sequential acquisition of dual-axis EM tomographic data.
J Struct Biol. 2009 Nov;168(2):323-31. doi: 10.1016/j.jsb.2009.06.010. Epub 2009 Jun 21.
6
Fully automated, sequential tilt-series acquisition with Leginon.
J Struct Biol. 2009 Jul;167(1):11-8. doi: 10.1016/j.jsb.2009.03.019. Epub 2009 Apr 8.
7
Performance evaluation of image processing algorithms on the GPU.
J Struct Biol. 2008 Oct;164(1):153-60. doi: 10.1016/j.jsb.2008.07.006. Epub 2008 Jul 24.
8
How electron cryotomography is opening a new window onto prokaryotic ultrastructure.
Curr Opin Struct Biol. 2007 Apr;17(2):260-7. doi: 10.1016/j.sbi.2007.03.002. Epub 2007 Mar 29.
9
Implementation and performance evaluation of reconstruction algorithms on graphics processors.
J Struct Biol. 2007 Jan;157(1):288-95. doi: 10.1016/j.jsb.2006.08.010. Epub 2006 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验