Suppr超能文献

一种层析重建的矩阵方法及其在 GPU 上的实现。

A matrix approach to tomographic reconstruction and its implementation on GPUs.

机构信息

Deptartment of Computer Architecture, University of Almería, 04120 Almería, Spain.

出版信息

J Struct Biol. 2010 Apr;170(1):146-51. doi: 10.1016/j.jsb.2010.01.021. Epub 2010 Feb 2.

Abstract

Electron tomography allows elucidation of the molecular architecture of complex biological specimens. Weighted backprojection (WBP) is the standard reconstruction method in the field. In this work, three-dimensional reconstruction with WBP is addressed from a matrix perspective by formulating the problem as a set of sparse matrix-vector products, with the matrix being constant and shared by all the products. This matrix approach allows efficient implementations of reconstruction algorithms. Although WBP is computationally simple, the resolution requirements may turn the tomographic reconstruction into a computationally intensive problem. Parallel systems have traditionally been used to cope with such demands. Recently, graphics processor units (GPUs) have emerged as powerful platforms for scientific computing and they are getting increasing interest. In combination with GPU computing, the matrix approach for WBP exhibits a significant acceleration factor compared to the standard implementation.

摘要

电子断层扫描可以阐明复杂生物样本的分子结构。加权反向投影 (WBP) 是该领域的标准重建方法。在这项工作中,通过将问题表述为一组稀疏矩阵-向量乘积,将 WBP 的三维重建从矩阵角度解决,其中矩阵是常数且由所有乘积共享。这种矩阵方法允许高效实现重建算法。尽管 WBP 在计算上很简单,但分辨率要求可能会使断层重建成为一个计算密集型问题。传统上,并行系统被用于应对此类需求。最近,图形处理器单元 (GPU) 已成为科学计算的强大平台,并且越来越受到关注。与标准实现相比,WBP 的矩阵方法与 GPU 计算相结合,显示出显著的加速因子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验