CBMN, UMR CNRS 5248, Université Bordeaux 1, ENITAB, IECB, Avenue des Facultés, F-33405 Talence, France.
Institut de Biologie et Chimie des Protéines, UMR CNRS 5086, Université Lyon 1, IFR128 Lyon Biosciences Gerland, F-69007 Lyon, France.
J Gen Virol. 2010 Aug;91(Pt 8):1919-1930. doi: 10.1099/vir.0.021071-0. Epub 2010 Apr 7.
Cell entry and membrane fusion of the hepatitis C virus (HCV) depend on its envelope glycoproteins E1 and E2. HCV pseudotyped particles (HCVpps) are relevant and popular models to study the early steps of the HCV life cycle. However, no structural characterization of HCVpp has been available so far. Using cryo-transmission electron microscopy (cryo-TEM), providing structural information at nanometric resolution, the molecular details of HCVpps and their fusion with liposomes were studied. Cryo-TEM revealed HCVpps as regular 100 nm spherical structures containing the dense retroviral nucleocapsid surrounded by a lipid bilayer. E1-E2 glycoproteins were not readily visible on the membrane surface. Pseudoparticles bearing the E1-E2 glycoproteins of Semliki forest virus looked similar, whereas avian influenza A virus (fowl plague virus) haemagglutinin/neuraminidase-pseudotyped particles exhibited surface spikes. To further characterize HCVpp structurally, a novel method was designed based on magnetic beads covered with anti-HCV antibodies to enrich the samples with particles containing E1-E2. This strategy efficiently sorted HCVpps, which were then directly observed by cryo-TEM in the presence or absence of liposomes at low or neutral pH. After acidification, HCVpps looked the same as at neutral pH and closely contacted the liposomes. These are the first visualizations of early HCV membrane fusion events at the nanometer scale. Furthermore, fluorimetry analysis revealed a relative resistance of HCVpps regarding their fusion capacity when exposed to low pH. This study therefore brings several new molecular details to HCVpp characterization and this efficient strategy of virion immunosorting with magnetic nanobeads is direct, efficient and adaptable to extensive characterization of any virus at a nanometric resolution.
丙型肝炎病毒 (HCV) 的细胞进入和膜融合依赖于其包膜糖蛋白 E1 和 E2。HCV 假型颗粒 (HCVpp) 是研究 HCV 生命周期早期步骤的相关且流行的模型。然而,到目前为止,还没有 HCVpp 的结构特征。使用提供纳米级分辨率结构信息的冷冻透射电子显微镜 (cryo-TEM),研究了 HCVpp 及其与脂质体融合的分子细节。cryo-TEM 显示 HCVpp 为规则的 100nm 球形结构,包含密集的逆转录病毒核衣壳,周围是一层脂质双层。E1-E2 糖蛋白在膜表面不易见。带有 Semliki 森林病毒 E1-E2 糖蛋白的假颗粒看起来相似,而禽流感 A 病毒 (禽流感病毒) 血凝素/神经氨酸酶假型颗粒则具有表面刺突。为了进一步对 HCVpp 进行结构表征,设计了一种新的方法,该方法基于覆盖有抗 HCV 抗体的磁性珠来富集含有 E1-E2 的颗粒。该策略有效地对 HCVpp 进行分类,然后在低 pH 值或中性 pH 值下直接通过 cryo-TEM 观察到含有或不含有脂质体的 HCVpp。酸化后,HCVpp 与中性 pH 值时看起来一样,并与脂质体紧密接触。这是在纳米尺度上首次可视化 HCV 早期膜融合事件。此外,荧光分析显示,HCVpp 在暴露于低 pH 值时,其融合能力具有相对抗性。因此,这项研究为 HCVpp 的表征带来了一些新的分子细节,并且这种使用磁性纳米珠的病毒免疫分选的有效策略直接、高效且适用于任何病毒的纳米分辨率的广泛表征。