Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America.
PLoS One. 2010 Apr 1;5(4):e9943. doi: 10.1371/journal.pone.0009943.
Pluripotent stem cells produce tissue-specific lineages through programmed acquisition of sequential gene expression patterns that function as a blueprint for organ formation. As embryonic stem cells respond concomitantly to diverse signaling pathways during differentiation, extraction of a pro-cardiogenic network would offer a roadmap to streamline cardiac progenitor output.
To resolve gene ontology priorities within precursor transcriptomes, cardiogenic subpopulations were here generated according to either growth factor guidance or stage-specific biomarker sorting. Innate expression profiles were independently delineated through unbiased systems biology mapping, and cross-referenced to filter transcriptional noise unmasking a conserved progenitor motif (55 up- and 233 down-regulated genes). The streamlined pool of 288 genes organized into a core biological network that prioritized the "Cardiovascular Development" function. Recursive in silico deconvolution of the cardiogenic neighborhood and associated canonical signaling pathways identified a combination of integrated axes, CXCR4/SDF-1, Flk-1/VEGF and BMP2r/BMP2, predicted to synchronize cardiac specification. In vitro targeting of the resolved triad in embryoid bodies accelerated expression of Nkx2.5, Mef2C and cardiac-MHC, enhanced beating activity, and augmented cardiogenic yield.
Transcriptome-wide dissection of a conserved progenitor profile thus revealed functional highways that coordinate cardiogenic maturation from a pluripotent ground state. Validating the bioinformatics algorithm established a strategy to rationally modulate cell fate, and optimize stem cell-derived cardiogenesis.
多能干细胞通过程序化获取顺序基因表达模式产生组织特异性谱系,这些模式作为器官形成的蓝图。由于胚胎干细胞在分化过程中同时响应多种信号通路,因此提取促心肌生成网络将为简化心肌祖细胞输出提供路线图。
为了解析前体转录组中的基因本体优先级,根据生长因子指导或阶段特异性生物标志物分选,在此生成了心肌生成亚群。通过无偏系统生物学图谱独立描绘先天表达谱,并交叉引用以筛选出揭示保守祖细胞模式(55 个上调和 233 个下调基因)的转录噪声。简化的 288 个基因池组织成一个核心生物学网络,该网络优先考虑“心血管发育”功能。对心肌生成邻居和相关经典信号通路的递归计算分析确定了一组整合轴,即 CXCR4/SDF-1、Flk-1/VEGF 和 BMP2r/BMP2,预计可同步心脏特化。在胚状体中靶向解析的三联体可加速 Nkx2.5、Mef2C 和心脏型 MHC 的表达,增强搏动活性,并增加心肌生成量。
对保守祖细胞特征的全转录组剖析揭示了协调多能起始状态下心肌生成成熟的功能高速公路。验证生物信息学算法建立了一种合理调节细胞命运和优化干细胞衍生心肌生成的策略。