Center for Clinical and Translational Sciences, Rochester, MN, USA.
Stem Cell Rev Rep. 2015 Jun;11(3):501-10. doi: 10.1007/s12015-014-9557-5.
Over the last decade, advancements in stem cell biology have yielded a variety of sources for stem cell-based cardiovascular investigation. Stem cell behavior, whether to maintain its stable state of pluripotency or to prime toward the cardiovascular lineage is governed by a set of coordinated interactions between epigenetic, transcriptional, and translational mechanisms. The science of incorporating genes (genomics), RNA (transcriptomics), proteins (proteomics), and metabolites (metabolomics) data in a specific biological sample is known as systems biology. Integrating systems biology in progression with stem cell biologics can contribute to our knowledge of mechanisms that underlie pluripotency maintenance and guarantee fidelity of cardiac lineage specification. This review provides a brief summarization of OMICS-based strategies including transcriptomics, proteomics, and metabolomics used to understand stem cell fate and to outline molecular processes involved in heart development. Additionally, current efforts in cardioregeneration based on the "one-size-fits-all" principle limit the potential of individualized therapy in regenerative medicine. Here, we summarize recent studies that introduced systems biology into cardiovascular clinical outcomes analysis, allowing for predictive assessment for disease recurrence and patient-specific therapeutic response.
在过去的十年中,干细胞生物学的进步产生了各种基于干细胞的心血管研究来源。干细胞的行为,无论是维持其多能性的稳定状态,还是向心血管谱系分化,都受到一组协调的表观遗传、转录和翻译机制之间的相互作用的控制。将基因(基因组学)、RNA(转录组学)、蛋白质(蛋白质组学)和代谢物(代谢组学)数据整合到特定生物样本中的科学称为系统生物学。将系统生物学与干细胞生物相结合,可以帮助我们了解维持多能性的机制,并保证心脏谱系特化的保真度。这篇综述简要总结了基于 OMICS 的策略,包括转录组学、蛋白质组学和代谢组学,用于了解干细胞命运,并概述参与心脏发育的分子过程。此外,基于“一刀切”原则的心脏再生的当前努力限制了再生医学中个体化治疗的潜力。在这里,我们总结了最近将系统生物学引入心血管临床结果分析的研究,允许对疾病复发和患者特定治疗反应进行预测性评估。