Suppr超能文献

诱导 Spätzle 激活的分子机制,Spätzle 是果蝇 Toll 受体的配体。

Molecular mechanism that induces activation of Spätzle, the ligand for the Drosophila Toll receptor.

机构信息

Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom.

出版信息

J Biol Chem. 2010 Jun 18;285(25):19502-9. doi: 10.1074/jbc.M109.098186. Epub 2010 Apr 8.

Abstract

The Drosophila Toll receptor is activated by an endogenous cytokine ligand Spätzle. Active ligand is generated in response to positional cues in embryonic dorso-ventral patterning and microbial pathogens in the insect immune response. Spätzle is secreted as a pro-protein and is processed into an active form by the serine endoproteases Easter and Spätzle-processing enzyme during dorso-ventral patterning and infection, respectively. Here, we provide evidence for the molecular mechanism of this activation process. We show that the Spätzle prodomain masks a predominantly hydrophobic region of Spätzle and that proteolysis causes a conformational change that exposes determinants that are critical for binding to the Toll receptor. We also gather that a conserved sequence motif in the prodomain presents features of an amphipathic helix likely to bind a hydrophobic cleft in Spätzle thereby occluding the putative Toll binding region. This mechanism of activation has a striking similarity to that of coagulogen, a clotting factor of the horseshoe crab, an invertebrate that has changed little in 400 million years. Taken together, our findings demonstrate that an ancient passive defense system has been adapted during evolution and converted for use in a critical pathway of innate immune signaling and embryonic morphogenesis.

摘要

果蝇 Toll 受体被内源性细胞因子配体 Spätzle 激活。活性配体是在胚胎背腹模式形成过程中的位置线索和昆虫免疫反应中的微生物病原体的反应中产生的。Spätzle 作为前蛋白分泌,并在背腹模式形成和感染过程中分别由丝氨酸内切蛋白酶 Easter 和 Spätzle 加工酶加工成活性形式。在这里,我们提供了这种激活过程的分子机制的证据。我们表明,Spätzle 前域掩盖了 Spätzle 的主要疏水区,并且蛋白水解导致构象变化,暴露了对与 Toll 受体结合至关重要的决定因素。我们还发现,前域中的保守序列基序具有两亲性螺旋的特征,可能与 Spätzle 中的疏水裂缝结合,从而掩盖了假定的 Toll 结合区域。这种激活机制与马蹄蟹凝血因子凝血酶原的激活机制非常相似,马蹄蟹是一种在 4 亿年中变化很小的无脊椎动物。总之,我们的研究结果表明,一种古老的被动防御系统在进化过程中被适应,并转化为先天免疫信号和胚胎形态发生的关键途径的用途。

相似文献

1
Molecular mechanism that induces activation of Spätzle, the ligand for the Drosophila Toll receptor.
J Biol Chem. 2010 Jun 18;285(25):19502-9. doi: 10.1074/jbc.M109.098186. Epub 2010 Apr 8.
2
Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling.
Nat Immunol. 2003 Aug;4(8):794-800. doi: 10.1038/ni955. Epub 2003 Jul 20.
3
Role of the Spatzle Pro-domain in the generation of an active toll receptor ligand.
J Biol Chem. 2007 May 4;282(18):13522-31. doi: 10.1074/jbc.M700068200. Epub 2007 Feb 26.
4
Evolutionary and functional epitopes of the Spätzle protein: new insights into activation of the Toll receptor.
Cell Mol Life Sci. 2009 May;66(9):1595-602. doi: 10.1007/s00018-009-9028-3.
5
A Spätzle-processing enzyme required for toll signaling activation in Drosophila innate immunity.
Dev Cell. 2006 Jan;10(1):45-55. doi: 10.1016/j.devcel.2005.11.013.
6
Ligand-receptor and receptor-receptor interactions act in concert to activate signaling in the Drosophila toll pathway.
J Biol Chem. 2005 Jun 17;280(24):22793-9. doi: 10.1074/jbc.M502074200. Epub 2005 Mar 28.
7
Structure of the Toll-Spatzle complex, a molecular hub in Drosophila development and innate immunity.
Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6281-6. doi: 10.1073/pnas.1320678111. Epub 2014 Apr 14.
9
Spätzle-Processing Enzyme-independent Activation of the Toll Pathway in Drosophila Innate Immunity.
Cell Struct Funct. 2016 May 7;41(1):55-60. doi: 10.1247/csf.16002. Epub 2016 Feb 4.

引用本文的文献

3
A myeloid differentiation-like protein in partnership with Toll5 from the pest insect senses baculovirus infection.
Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2415398121. doi: 10.1073/pnas.2415398121. Epub 2024 Oct 23.
4
Selection and Comparative Gene Expression of Midgut-Specific Targets for .
Insects. 2023 Jan 12;14(1):76. doi: 10.3390/insects14010076.
5
Infection increases activity via Toll dependent and independent mechanisms in Drosophila melanogaster.
PLoS Pathog. 2022 Sep 21;18(9):e1010826. doi: 10.1371/journal.ppat.1010826. eCollection 2022 Sep.
6
Structure and dynamics of Toll immunoreceptor activation in the mosquito Aedes aegypti.
Nat Commun. 2022 Aug 30;13(1):5110. doi: 10.1038/s41467-022-32690-6.
7
Antimicrobial peptides from : a splendid immune defense response in silkworms.
RSC Adv. 2020 Jan 2;10(1):512-523. doi: 10.1039/c9ra06864c. eCollection 2019 Dec 20.
8
Spätzle 1b Is Required to Confer Antibacterial Defense Against Gram-Negative Bacteria by Regulation of Antimicrobial Peptides.
Front Physiol. 2021 Nov 18;12:758859. doi: 10.3389/fphys.2021.758859. eCollection 2021.
9
A Novel Long-Noncoding RNA LncZFAS1 Prevents MPP-Induced Neuroinflammation Through MIB1 Activation.
Mol Neurobiol. 2022 Feb;59(2):778-799. doi: 10.1007/s12035-021-02619-z. Epub 2021 Nov 13.
10
Evolution of Toll, Spatzle and MyD88 in insects: the problem of the Diptera bias.
BMC Genomics. 2021 Jul 21;22(1):562. doi: 10.1186/s12864-021-07886-7.

本文引用的文献

1
Proteolytic activation and function of the cytokine Spätzle in the innate immune response of a lepidopteran insect, Manduca sexta.
FEBS J. 2010 Jan;277(1):148-62. doi: 10.1111/j.1742-4658.2009.07465.x. Epub 2009 Nov 26.
2
Evolutionary and functional epitopes of the Spätzle protein: new insights into activation of the Toll receptor.
Cell Mol Life Sci. 2009 May;66(9):1595-602. doi: 10.1007/s00018-009-9028-3.
3
Drosophila neurotrophins reveal a common mechanism for nervous system formation.
PLoS Biol. 2008 Nov 18;6(11):e284. doi: 10.1371/journal.pbio.0060284.
4
Biophysical characterization of refolded Drosophila Spätzle, a cystine knot protein, reveals distinct properties of three isoforms.
J Biol Chem. 2008 Nov 21;283(47):32598-609. doi: 10.1074/jbc.M801815200. Epub 2008 Sep 12.
5
Structural insight into the mechanism of activation of the Toll receptor by the dimeric ligand Spätzle.
J Biol Chem. 2008 May 23;283(21):14629-35. doi: 10.1074/jbc.M800112200. Epub 2008 Mar 17.
6
Structure and function of Toll receptors and their ligands.
Annu Rev Biochem. 2007;76:141-65. doi: 10.1146/annurev.biochem.76.060305.151318.
7
Role of the Spatzle Pro-domain in the generation of an active toll receptor ligand.
J Biol Chem. 2007 May 4;282(18):13522-31. doi: 10.1074/jbc.M700068200. Epub 2007 Feb 26.
8
Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA.
EMBO J. 2006 Oct 18;25(20):5005-14. doi: 10.1038/sj.emboj.7601363. Epub 2006 Oct 5.
9
Structural and functional properties of mouse proNGF.
Biochem Soc Trans. 2006 Aug;34(Pt 4):605-6. doi: 10.1042/BST0340605.
10
A Spätzle-processing enzyme required for toll signaling activation in Drosophila innate immunity.
Dev Cell. 2006 Jan;10(1):45-55. doi: 10.1016/j.devcel.2005.11.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验