Suppr超能文献

从嗜热生物堆肥中富集的纤维素分解菌群落中的细菌多样性和糖苷水解酶家族 48 基因。

Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost.

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.

出版信息

Appl Environ Microbiol. 2010 Jun;76(11):3545-53. doi: 10.1128/AEM.02689-09. Epub 2010 Apr 9.

Abstract

The enrichment from nature of novel microbial communities with high cellulolytic activity is useful in the identification of novel organisms and novel functions that enhance the fundamental understanding of microbial cellulose degradation. In this work we identify predominant organisms in three cellulolytic enrichment cultures with thermophilic compost as an inoculum. Community structure based on 16S rRNA gene clone libraries featured extensive representation of clostridia from cluster III, with minor representation of clostridial clusters I and XIV and a novel Lutispora species cluster. Our studies reveal different levels of 16S rRNA gene diversity, ranging from 3 to 18 operational taxonomic units (OTUs), as well as variability in community membership across the three enrichment cultures. By comparison, glycosyl hydrolase family 48 (GHF48) diversity analyses revealed a narrower breadth of novel clostridial genes associated with cultured and uncultured cellulose degraders. The novel GHF48 genes identified in this study were related to the novel clostridia Clostridium straminisolvens and Clostridium clariflavum, with one cluster sharing as little as 73% sequence similarity with the closest known relative. In all, 14 new GHF48 gene sequences were added to the known diversity of 35 genes from cultured species.

摘要

从具有高纤维素分解活性的新型微生物群落中进行自然选择富集,有助于鉴定新的生物体和新的功能,从而增强对微生物纤维素降解的基本理解。在这项工作中,我们以热堆肥为接种物,鉴定了三个纤维素分解富集培养物中的主要生物。基于 16S rRNA 基因克隆文库的群落结构特征是 III 簇梭菌的广泛代表,I 簇和 XIV 簇梭菌以及新型 Lutispora 种簇的代表较少。我们的研究揭示了不同水平的 16S rRNA 基因多样性,范围从 3 到 18 个操作分类单位(OTUs),以及三个富集培养物中群落成员的可变性。相比之下,糖苷水解酶家族 48(GHF48)多样性分析显示与培养和未培养的纤维素降解菌相关的新型梭菌基因具有较窄的广度。本研究中鉴定的新型 GHF48 基因与新型梭菌 Clostridium straminisolvens 和 Clostridium clariflavum 有关,其中一个簇与最接近的已知亲缘关系的相似度仅为 73%。总共,从已知的 35 个培养物种基因中增加了 14 个新的 GHF48 基因序列。

相似文献

1
Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost.
Appl Environ Microbiol. 2010 Jun;76(11):3545-53. doi: 10.1128/AEM.02689-09. Epub 2010 Apr 9.
2
Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost.
Appl Environ Microbiol. 2011 Apr;77(7):2282-91. doi: 10.1128/AEM.01219-10. Epub 2011 Feb 11.
3
Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes.
Res Microbiol. 2012 Apr;163(3):221-32. doi: 10.1016/j.resmic.2011.12.001. Epub 2011 Dec 13.
5
Cellulolytic bacteria in the foregut of the dromedary camel (Camelus dromedarius).
Appl Environ Microbiol. 2012 Dec;78(24):8836-9. doi: 10.1128/AEM.02420-12. Epub 2012 Oct 5.
6
Community dynamics of cellulose-adapted thermophilic bacterial consortia.
Environ Microbiol. 2013 Sep;15(9):2573-87. doi: 10.1111/1462-2920.12159. Epub 2013 Jun 13.
7
Enrichment and characterization of an anaerobic cellulolytic microbial consortium SQD-1.1 from mangrove soil.
Appl Microbiol Biotechnol. 2014 Jan;98(1):465-74. doi: 10.1007/s00253-013-4857-2. Epub 2013 Mar 26.
8
Microbial biodiversity of thermophilic communities in hot mineral soils of Tramway Ridge, Mount Erebus, Antarctica.
Environ Microbiol. 2009 Mar;11(3):715-28. doi: 10.1111/j.1462-2920.2009.01859.x.
9
Recovering glycoside hydrolase genes from active tundra cellulolytic bacteria.
Can J Microbiol. 2014 Jul;60(7):469-76. doi: 10.1139/cjm-2014-0193. Epub 2014 Jun 11.
10
Distribution and diversity of members of the bacterial phylum Fibrobacteres in environments where cellulose degradation occurs.
Syst Appl Microbiol. 2014 Oct;37(7):502-9. doi: 10.1016/j.syapm.2014.06.001. Epub 2014 Jul 17.

引用本文的文献

1
Cellulolytic and hemicellulolytic capacity of Acetivibrio clariflavus.
Appl Microbiol Biotechnol. 2025 Apr 28;109(1):105. doi: 10.1007/s00253-025-13471-9.
4
Cellulolytic thermophilic microorganisms in white biotechnology: a review.
Folia Microbiol (Praha). 2020 Feb;65(1):25-43. doi: 10.1007/s12223-019-00710-6. Epub 2019 May 17.
5
Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry.
J Anim Sci Biotechnol. 2019 Jan 15;10:2. doi: 10.1186/s40104-018-0310-9. eCollection 2019.
7
Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing.
PLoS One. 2017 Oct 23;12(10):e0186051. doi: 10.1371/journal.pone.0186051. eCollection 2017.
9
C/N ratio drives soil actinobacterial cellobiohydrolase gene diversity.
Appl Environ Microbiol. 2015 May 1;81(9):3016-28. doi: 10.1128/AEM.00067-15. Epub 2015 Feb 20.
10
Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw.
Biotechnol Biofuels. 2014 Dec 31;7(1):495. doi: 10.1186/s13068-014-0180-0. eCollection 2014.

本文引用的文献

2
Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases.
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1948-53. doi: 10.1073/pnas.0806191105. Epub 2009 Jan 30.
5
Diversity and abundance of glycosyl hydrolase family 5 in the North Atlantic Ocean.
FEMS Microbiol Ecol. 2008 Mar;63(3):316-27. doi: 10.1111/j.1574-6941.2007.00429.x. Epub 2008 Jan 5.
6
Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically.
FEMS Microbiol Lett. 2007 Mar;268(2):194-201. doi: 10.1111/j.1574-6968.2006.00583.x. Epub 2007 Jan 12.
8
Distribution of extensive nifH gene diversity across physical soil microenvironments.
Microb Ecol. 2006 May;51(4):441-52. doi: 10.1007/s00248-006-9044-x. Epub 2006 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验