Suppr超能文献

有机薄膜的飞行时间二次离子质谱深度剖析:单束与双束分析的比较

ToF-SIMS Depth Profiling of Organic Films: A Comparison between Single Beam and Dual-beam Analysis.

作者信息

Brison J, Muramoto S, Castner David G

机构信息

National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Department of Chemical Engineering, Box 351750, Seattle, WA 98195.

出版信息

J Phys Chem C Nanomater Interfaces. 2010 Jan 5;114(12):5565-5573. doi: 10.1021/jp9066179.

Abstract

In dual-beam depth profiling, a high energy analysis beam and a lower energy etching beam are operated in series. Although the fluence of the analysis beam is usually kept well below the static SIMS limit, complete removal of the damage induced by the high energy analysis beam while maintaining a good depth resolution is difficult. In this study a plasma polymerized tetraglyme film is used as the model organic system and the dimensionless parameter R, (analysis beam fluence)/(total ion fluence), is introduced to quantify the degree of sample damage induced as a function of the analysis beam fluence. It was observed for a constant C(60) (+) etching beam fluence, increasing the analysis fluence (and consequently increasing the R parameter) increased in the amount of damage accumulated in the sample. For Bi(n) (+) (n = 1 and 3) and C(60) (+) depth profiling, minimal damage accumulation was observed up to R = 0.03, with a best depth resolution of 8 nm. In general, an increase in the Bi(n) (+) analysis fluence above this value resulted in a decrease in the molecular signals of the steady state region of the depth profile and a degradation of the depth resolution at the polymer/substrate interface.

摘要

在双束深度剖析中,高能分析束和低能蚀刻束串联运行。尽管分析束的通量通常保持在静态二次离子质谱(SIMS)极限以下,但在保持良好深度分辨率的同时完全去除高能分析束引起的损伤却很困难。在本研究中,等离子体聚合四甘醇二甲醚薄膜被用作模型有机体系,并引入无量纲参数R,即(分析束通量)/(总离子通量),以量化作为分析束通量函数的样品损伤程度。观察到,对于恒定的C(60) (+)蚀刻束通量,增加分析通量(从而增加R参数)会增加样品中累积的损伤量。对于Bi(n) (+)(n = 1和3)和C(60) (+)深度剖析,在R = 0.03之前观察到最小的损伤累积,最佳深度分辨率为8纳米。一般来说,Bi(n) (+)分析通量高于此值会导致深度剖析稳态区域的分子信号下降,以及聚合物/衬底界面处深度分辨率的降低。

相似文献

1
ToF-SIMS Depth Profiling of Organic Films: A Comparison between Single Beam and Dual-beam Analysis.
J Phys Chem C Nanomater Interfaces. 2010 Jan 5;114(12):5565-5573. doi: 10.1021/jp9066179.
3
ToF-SIMS Depth Profiling of Organic Delta Layers with Low-Energy Cesium Ions: Depth Resolution Assessment.
J Am Soc Mass Spectrom. 2019 Aug;30(8):1537-1544. doi: 10.1007/s13361-019-02224-4. Epub 2019 May 6.
7
ToF-S-SIMS molecular 3D analysis of micro-objects as an alternative to ion beam erosion at large depth: application to single inkjet dots.
Anal Bioanal Chem. 2013 Feb;405(6):2053-64. doi: 10.1007/s00216-012-6647-6. Epub 2013 Jan 16.
8
Depth profiling of metal overlayers on organic substrates with cluster SIMS.
Anal Chem. 2013 Nov 5;85(21):10565-72. doi: 10.1021/ac402658r. Epub 2013 Oct 10.
9
Cluster secondary ion mass spectrometry and the temperature dependence of molecular depth profiles.
Anal Chem. 2012 May 1;84(9):3981-9. doi: 10.1021/ac2032589. Epub 2012 Apr 10.
10
High-resolution secondary ion mass spectrometry depth profiling of nanolayers.
Rapid Commun Mass Spectrom. 2012 Oct 15;26(19):2224-30. doi: 10.1002/rcm.6344.

引用本文的文献

1
ToF-SIMS analysis of ultrathin films and their fragmentation patterns.
J Vac Sci Technol A. 2024 Mar;42(2):023416. doi: 10.1116/6.0003249. Epub 2024 Feb 5.
4
ToF-SIMS Depth Profiling of Metal, Metal Oxide, and Alloy Multilayers in Atmospheres of H, CH, CO, and O.
J Am Soc Mass Spectrom. 2022 Jan 5;33(1):31-44. doi: 10.1021/jasms.1c00218. Epub 2021 Dec 22.
5
Hybrid Perovskites Depth Profiling with Variable-Size Argon Clusters and Monatomic Ions Beams.
Materials (Basel). 2019 Mar 2;12(5):726. doi: 10.3390/ma12050726.
6
Dealing with image shifting in 3D ToF-SIMS depth profiles.
Biointerphases. 2018 Sep 5;13(6):06E402. doi: 10.1116/1.5041740.
7
Low Temperature Plasma for the Preparation of Crater Walls for Compositional Depth Profiling of Thin Inorganic Multilayers.
Surf Interface Anal. 2017 Jun;49(6):515-521. doi: 10.1002/sia.6187. Epub 2016 Oct 17.
8
Biomedical surface analysis: Evolution and future directions (Review).
Biointerphases. 2017 Apr 24;12(2):02C301. doi: 10.1116/1.4982169.
9
Three-dimensional localization of polymer nanoparticles in cells using ToF-SIMS.
Biointerphases. 2015 Jun 3;11(2):02A304. doi: 10.1116/1.4934795.

本文引用的文献

2
Molecular dynamics simulations of sputtering of Langmuir-Blodgett multilayers by keV C(60) projectiles.
J Phys Chem C Nanomater Interfaces. 2009 Apr 9;113(14):5641. doi: 10.1021/jp809769q.
3
Molecular Depth Profiling using a C(60) Cluster Beam: the Role of Impact Energy.
J Phys Chem C Nanomater Interfaces. 2008 Oct 23;112(42):16550-16555. doi: 10.1021/jp8049763.
4
Cluster secondary ion mass spectrometry of polymers and related materials.
Mass Spectrom Rev. 2010 Mar-Apr;29(2):247-93. doi: 10.1002/mas.20233.
5
Investigating lipid-lipid and lipid-protein interactions in model membranes by ToF-SIMS.
Appl Surf Sci. 2008 Dec 15;255(4):1190-1192. doi: 10.1016/j.apsusc.2008.05.255.
6
Three-dimensional depth profiling of molecular structures.
Anal Bioanal Chem. 2009 Apr;393(8):1835-42. doi: 10.1007/s00216-008-2596-5. Epub 2009 Jan 20.
7
Energy deposition during molecular depth profiling experiments with cluster ion beams.
Anal Chem. 2008 Jul 15;80(14):5293-301. doi: 10.1021/ac8002962. Epub 2008 Jun 13.
8
Depth profiling of organic films with X-ray photoelectron spectroscopy using C60+ and Ar+ co-sputtering.
Anal Chem. 2008 May 1;80(9):3412-5. doi: 10.1021/ac702626n. Epub 2008 Mar 21.
9
Quantitative molecular depth profiling of organic delta-layers by C60 ion sputtering and SIMS.
J Phys Chem B. 2008 Mar 6;112(9):2596-605. doi: 10.1021/jp077325n. Epub 2008 Feb 7.
10
Molecular depth-profiling of polycarbonate with low-energy Cs+ ions.
Rapid Commun Mass Spectrom. 2007;21(16):2680-4. doi: 10.1002/rcm.3135.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验