Suppr超能文献

基于图形处理器的蒙特卡罗模拟用于复杂异质组织中的光传播。

GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues.

作者信息

Ren Nunu, Liang Jimin, Qu Xiaochao, Li Jianfeng, Lu Bingjia, Tian Jie

机构信息

Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi'an 710071, China.

出版信息

Opt Express. 2010 Mar 29;18(7):6811-23. doi: 10.1364/OE.18.006811.

Abstract

As the most accurate model for simulating light propagation in heterogeneous tissues, Monte Carlo (MC) method has been widely used in the field of optical molecular imaging. However, MC method is time-consuming due to the calculations of a large number of photons propagation in tissues. The structural complexity of the heterogeneous tissues further increases the computational time. In this paper we present a parallel implementation for MC simulation of light propagation in heterogeneous tissues whose surfaces are constructed by different number of triangle meshes. On the basis of graphics processing units (GPU), the code is implemented with compute unified device architecture (CUDA) platform and optimized to reduce the access latency as much as possible by making full use of the constant memory and texture memory on GPU. We test the implementation in the homogeneous and heterogeneous mouse models with a NVIDIA GTX 260 card and a 2.40GHz Intel Xeon CPU. The experimental results demonstrate the feasibility and efficiency of the parallel MC simulation on GPU.

摘要

作为模拟光在异质组织中传播的最精确模型,蒙特卡罗(MC)方法已在光学分子成像领域得到广泛应用。然而,由于要计算大量光子在组织中的传播,MC方法耗时较长。异质组织的结构复杂性进一步增加了计算时间。在本文中,我们提出了一种用于MC模拟光在异质组织中传播的并行实现方法,这些异质组织的表面由不同数量的三角形网格构建而成。基于图形处理单元(GPU),代码在计算统一设备架构(CUDA)平台上实现,并通过充分利用GPU上的常量内存和纹理内存进行优化,以尽可能减少访问延迟。我们使用NVIDIA GTX 260显卡和2.40GHz英特尔至强CPU在均匀和异质小鼠模型中测试了该实现方法。实验结果证明了在GPU上进行并行MC模拟的可行性和效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验