Couzon Cécile, Duperray Alain, Verdier Claude
Laboratoire de Spectrométrie Physique (UMR 5588), CNRS, Université Grenoble I, 38402 Saint-Martin d'Hères cedex, France.
Eur Biophys J. 2009 Oct;38(8):1035-47. doi: 10.1007/s00249-009-0506-1. Epub 2009 Jul 5.
We present experiments involving cancer cells adhering to microchannels, subjected to increasing shear stresses (0.1-30 Pa). Morphological studies were carried out at different shear stresses. Cells exhibit spreading patterns similar to those observed under static conditions, as long as the shear stress is not too high. At critical wall shear stresses (around 2-5 Pa), cell-substrate contact area decreases until detachment at the larger stresses. Critical shear stresses are found to be lower for higher confinements (i.e. smaller cell height to channel height ratio). Fluorescent techniques were used to locate focal adhesions (typically 1 lm(2) in size) under various shearing conditions, showing that cells increase the number of focal contacts in the region facing the flow. To analyze such data, we propose a model to determine the critical stress, resulting from the competition between hydrodynamic forces and the adhesive cell resistance. With this model, typical adhesive stresses exerted at each focal contact can be determined and are in agreement with previous works.
我们展示了涉及癌细胞附着于微通道并承受逐渐增加的剪切应力(0.1 - 30 Pa)的实验。在不同的剪切应力下进行了形态学研究。只要剪切应力不太高,细胞呈现出与在静态条件下观察到的相似的铺展模式。在临界壁面剪切应力(约2 - 5 Pa)下,细胞与底物的接触面积减小,直至在更大应力下脱离。发现对于更高的限制条件(即更小的细胞高度与通道高度比),临界剪切应力更低。使用荧光技术在各种剪切条件下定位粘着斑(通常大小为1μm²),结果表明细胞在面向流动的区域增加了粘着接触的数量。为了分析此类数据,我们提出了一个模型来确定临界应力,该应力由流体动力和细胞粘附阻力之间的竞争产生。通过这个模型,可以确定在每个粘着接触处施加的典型粘附应力,并且与先前的研究结果一致。