Department of Mechanical and Aerospace Engineering, SUNY-Buffalo, Buffalo, NY 14260, USA.
Lab Chip. 2010 Jan 21;10(2):235-9. doi: 10.1039/b914874d. Epub 2009 Nov 17.
Fluid shear stress has profound effects on cell physiology. Here we present a versatile microfluidic method capable of generating variable magnitudes, gradients, and different modes of shear flow, to study sensory and force transduction mechanisms in cells. The chip allows cell culture under spatially resolved shear flow conditions as well as study of cell response to shear flow in real-time. Using this chip, we studied the effects of chronic shear stress on cellular functions of Madin-Darby Canine Kidney (MDCK), renal epithelial cells. We show that shear stress causes reorganization of actin cytoskeleton, which suppresses flow-induced Ca(2+) response.
流体切应力对细胞生理学有深远的影响。在这里,我们提出了一种通用的微流控方法,能够产生不同大小、梯度和不同模式的切变流,以研究细胞中的感觉和力转导机制。该芯片允许在空间分辨切变流条件下培养细胞,并实时研究细胞对切变流的反应。使用该芯片,我们研究了慢性切应力对犬肾细胞(MDCK)、肾上皮细胞的细胞功能的影响。我们发现,切应力导致肌动蛋白细胞骨架的重排,从而抑制了流诱导的 Ca(2+)反应。