Tramonti Angela, De Santis Fiorenzo, Pennacchietti Eugenia, De Biase Daniela
Institute of Molecular Biology and Pathology, CNR, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy.
Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy.
AIMS Microbiol. 2017 Feb 17;3(1):71-87. doi: 10.3934/microbiol.2017.1.71. eCollection 2017.
In order to survive the exposure to acid pH, activates molecular circuits leading from acid tolerance to extreme acid resistance (AR). The activation of the different circuits involves several global and specific regulators affecting the expression of membrane, periplasmic and cytosolic proteins acting at different levels to dampen the harmful consequences of the uncontrolled entry of protons intracellularly. Many genes coding for the structural components of the AR circuits (protecting from pH ≤ 2.5) and their specific transcriptional regulators cluster in a genomic region named AFI (acid fitness island) and respond in the same way to global regulators (such as RpoS and H-NS) as well as to anaerobiosis, alkaline, cold and respiratory stresses, in addition to the acid stress. Notably some genes coding for structural components of AR, though similarly regulated, are non-AFI localised. Amongst these the operon, coding for the major structural components of the glutamate-based AR system, and the gene, coding for a glutaminase required for the glutamine-based AR system. The gene, a non-AFI gene, appears to belong to this group. We mapped the transcription start of the 1.1 kb monocistronic transcript: it is an adenine residue located 22 nt upstream a GTG start codon. By real-time PCR we show that GadE and GadX equally affect the expression of under oxidative growth conditions. While YhiM is partially involved in the RpoS-dependent AR, we failed to detect a significant involvement in the glutamate- or glutamine-dependent AR at pH ≤ 2.5. However, when grown in EG at pH 5.0, the mutant displays impaired GABA export, whereas when YhiM is overexpressed, an increases of GABA export in EG medium in the pH range 2.5-5.5 is observed. Our data suggest that YhiM is a GABA transporter with a physiological role more relevant at mildly acidic pH, but not a key component of AR at pH < 2.5.
为了在酸性pH环境中存活,激活从耐酸性到极端耐酸性(AR)的分子途径。不同途径的激活涉及多个全局和特定调节因子,这些调节因子影响膜蛋白、周质蛋白和胞质蛋白的表达,它们在不同水平发挥作用,以减轻质子不受控制地进入细胞内所带来的有害后果。许多编码AR途径结构成分(可抵御pH≤2.5)的基因及其特定转录调节因子聚集在一个名为AFI(酸适应性岛)的基因组区域,并且除了酸应激外,它们对全局调节因子(如RpoS和H-NS)以及厌氧、碱性、寒冷和呼吸应激的反应方式相同。值得注意的是,一些编码AR结构成分的基因,尽管受到类似调节,但并不位于AFI区域。其中包括编码基于谷氨酸的AR系统主要结构成分的操纵子,以及编码基于谷氨酰胺的AR系统所需谷氨酰胺酶的基因。基因,一个非AFI基因,似乎属于这一组。我们绘制了1.1 kb单顺反子转录本的转录起始位点:它是一个位于GTG起始密码子上游22 nt处的腺嘌呤残基。通过实时PCR我们表明,在氧化生长条件下,GadE和GadX同样影响的表达。虽然YhiM部分参与依赖RpoS的AR,但在pH≤2.5时,我们未能检测到其在依赖谷氨酸或谷氨酰胺的AR中有显著作用。然而,当在pH 5.0的EG中生长时,突变体显示GABA输出受损,而当YhiM过表达时,在pH范围2.5 - 5.5的EG培养基中观察到GABA输出增加。我们的数据表明,YhiM是一种GABA转运蛋白,其生理作用在轻度酸性pH时更相关,但不是pH < 2.5时AR的关键成分。