Kang Jiyoung, Park Hae-Jeong
Department of Scientific Computing, Pukyong National University, Busan, Republic of Korea.
Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea.
PLoS Comput Biol. 2024 Dec 23;20(12):e1012655. doi: 10.1371/journal.pcbi.1012655. eCollection 2024 Dec.
Integrating multiscale, multimodal neuroimaging data is essential for a comprehensive understanding of neural circuits. However, this is challenging due to the inherent trade-offs between spatial coverage and resolution in each modality, necessitating a computational strategy that combines modality-specific information effectively. This study introduces a dynamic causal modeling (DCM) framework designed to address the challenge of combining partially observed, multiscale signals across a larger-scale neural circuit by employing a shared neural state model with modality-specific observation models. The proposed method achieves robust circuit inference by iteratively integrating parameter estimates from local microscale and global meso- or macroscale circuits, derived from signals across various scales and modalities. Parameters estimated from high-resolution data within specific regions inform global circuit estimation by constraining neural properties in unobserved regions, while large-scale circuit data help elucidate detailed local circuitry. Using a virtual ground truth system, we validated the method across diverse experimental settings, combining calcium imaging (CaI), voltage-sensitive dye imaging (VSDI), and blood-oxygen-level-dependent (BOLD) signals-each with distinct coverage and resolution. Our reciprocal and iterative parameter estimation approach markedly improves the accuracy of neural property and connectivity estimates compared to traditional one-step estimation methods. This iterative integration of local and global parameters presents a reliable approach to inferring extensive, complex neural circuits from partially observed, multimodal, and multiscale data, showcasing how information from different scales reciprocally enhances entire circuit parameter estimation.
整合多尺度、多模态神经成像数据对于全面理解神经回路至关重要。然而,由于每种模态在空间覆盖范围和分辨率之间存在固有的权衡,这一过程具有挑战性,因此需要一种能够有效结合特定模态信息的计算策略。本研究引入了一种动态因果模型(DCM)框架,旨在通过采用具有特定模态观测模型的共享神经状态模型,应对在更大规模神经回路中结合部分观测到的多尺度信号这一挑战。所提出的方法通过迭代整合来自局部微观尺度和全局中观或宏观尺度回路的参数估计值来实现稳健的回路推断,这些估计值源自跨不同尺度和模态的信号。从特定区域内的高分辨率数据估计得到的参数,通过约束未观测区域的神经特性来为全局回路估计提供信息,而大规模回路数据则有助于阐明详细的局部电路。使用虚拟真值系统,我们在多种实验设置下验证了该方法,这些设置结合了钙成像(CaI)、电压敏感染料成像(VSDI)和血氧水平依赖(BOLD)信号——每种信号都具有不同的覆盖范围和分辨率。与传统的一步估计方法相比,我们的相互迭代参数估计方法显著提高了神经特性和连接性估计的准确性。这种局部和全局参数的迭代整合为从部分观测到的、多模态和多尺度数据推断广泛而复杂的神经回路提供了一种可靠的方法,展示了来自不同尺度的信息如何相互增强整个回路参数估计。