Suppr超能文献

质体磷酸丙糖异构酶在种子储备动员与幼苗建立整合中的关键作用。

The essential role of plastidial triose phosphate isomerase in the integration of seed reserve mobilization and seedling establishment.

作者信息

Chen Mingjie, Thelen Jay J

机构信息

Division of Biochemistry and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.

出版信息

Plant Signal Behav. 2010 May;5(5):583-5. doi: 10.4161/psb.11496. Epub 2010 Apr 20.

Abstract

Seed germination and seedling establishment are pivotal for the life cycle of seed plants. Storage reserve mobilization provides energy and carbon to support seedling development. Seedling establishment involves root elongation and plastid transition from a heterotrophic to photoautotrophic state, such that the seedling can attain independence once seed reserves have been depleted. At the biochemical level, this transition is likely complicated as it requires a spatial and temporal shift from degradation to synthesis for many metabolic pathways. The triose phosphate isomerase (TPI) catalyzes the reversible conversion of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (GAP) and is involved in many pathways including glycolysis, Calvin cycle, and glycerol metabolism. Plants contain both cytosolic and plastid forms of TPI and neither have been extensively characterized, presumably because TPI catalyzes a reversible reaction (i.e. substrate/product are in equilibrium) and is therefore unlikely to be of regulatory importance. In the recent study1, we discovered a knock-down mutant for pdTPI that reveals this enzyme plays a crucial, metabolic role during the heterotroph/autotroph transition phase, affecting both chloroplast development and seedling establishment. Inability of a functional cytosolic TPI to compensate for reduced pdTPI expression demonstrates plastid and cytosolic pools of DHAP and GAP are not in equilibrium and may reveal a novel plastid translocator.

摘要

种子萌发和幼苗建立对于种子植物的生命周期至关重要。储存储备的动员提供能量和碳以支持幼苗发育。幼苗建立涉及根的伸长以及质体从异养状态向光合自养状态的转变,这样一旦种子储备耗尽,幼苗就能实现独立。在生化水平上,这种转变可能很复杂,因为它需要许多代谢途径在空间和时间上从降解转变为合成。磷酸丙糖异构酶(TPI)催化磷酸二羟丙酮(DHAP)可逆转化为3-磷酸甘油醛(GAP),并参与包括糖酵解、卡尔文循环和甘油代谢在内的许多途径。植物含有胞质和质体形式的TPI,但两者都未得到广泛表征,大概是因为TPI催化可逆反应(即底物/产物处于平衡状态),因此不太可能具有调节重要性。在最近的研究中,我们发现了一个pdTPI的敲低突变体,该突变体揭示了这种酶在异养/自养过渡阶段发挥着关键的代谢作用,影响叶绿体发育和幼苗建立。功能性胞质TPI无法补偿pdTPI表达的降低,这表明DHAP和GAP的质体池和胞质池并不处于平衡状态,并且可能揭示了一种新型的质体转运体。

相似文献

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验