Suppr超能文献

模型预测滤波提高 MRI 温度成像的时间分辨率。

Model predictive filtering for improved temporal resolution in MRI temperature imaging.

机构信息

Department of Physics, University of Utah, Salt Lake City, Utah, USA.

出版信息

Magn Reson Med. 2010 May;63(5):1269-79. doi: 10.1002/mrm.22321.

Abstract

A novel method for reconstructing MRI temperature maps from undersampled data is presented. The method, model predictive filtering, combines temperature predictions from a preidentified thermal model with undersampled k-space data to create temperature maps in near real time. The model predictive filtering algorithm was implemented in three ways: using retrospectively undersampled k-space data from a fully sampled two-dimensional gradient echo (GRE) sequence (reduction factors R = 2.7 to R = 7.1), using actually undersampled data from a two-dimensional GRE sequence (R = 4.8), and using actually undersampled data from a three-dimensional GRE sequence (R = 12.1). Thirty-nine high-intensity focused ultrasound heating experiments were performed under MRI monitoring to test the model predictive filtering technique against the current gold standard for MR temperature mapping, the proton resonance frequency shift method. For both of the two-dimensional implementations, the average error over the five hottest voxels from the hottest time frame remained between +/-0.8 degrees C and the temperature root mean square error over a 24 x 7 x 3 x 25-voxel region of interest remained below 0.35 degrees C. The largest errors for the three-dimensional implementation were slightly worse: -1.4 degrees C for the mean error of the five hottest voxels and 0.61 degrees C for the temperature root mean square error.

摘要

提出了一种从欠采样数据重建 MRI 温度图的新方法。该方法,即模型预测滤波,将来自预识别热模型的温度预测与欠采样 k 空间数据相结合,以便近乎实时地创建温度图。模型预测滤波算法以三种方式实现:使用完全采样的二维梯度回波 (GRE) 序列中的回顾性欠采样 k 空间数据(降采样因子 R = 2.7 至 R = 7.1)、使用二维 GRE 序列中的实际欠采样数据(R = 4.8),以及使用三维 GRE 序列中的实际欠采样数据(R = 12.1)。在 MRI 监测下进行了 39 次高强度聚焦超声加热实验,以将模型预测滤波技术与磁共振温度测绘的当前金标准——质子共振频率偏移法进行比较。对于二维实现,最热时间帧的五个最热体素的平均误差在 +/-0.8 摄氏度之间,24 x 7 x 3 x 25 体素感兴趣区的温度均方根误差仍低于 0.35 摄氏度。对于三维实现,最大误差略差:五个最热体素的平均误差为-1.4 摄氏度,温度均方根误差为 0.61 摄氏度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b31b/5450947/c823cc4c14ca/nihms858183f1.jpg

相似文献

10

引用本文的文献

1
Technical advances in motion-robust MR thermometry.运动稳健型磁共振测温技术进展。
Magn Reson Med. 2024 Jul;92(1):15-27. doi: 10.1002/mrm.30057. Epub 2024 Mar 19.
8
Improved MR thermometry for laser interstitial thermotherapy.用于激光间质热疗的改进型磁共振测温技术。
Lasers Surg Med. 2019 Mar;51(3):286-300. doi: 10.1002/lsm.23049. Epub 2019 Jan 15.
9
Validation of hybrid angular spectrum acoustic and thermal modelling in phantoms.在体模中验证混合角谱声学和热建模。
Int J Hyperthermia. 2018;35(1):578-590. doi: 10.1080/02656736.2018.1513168. Epub 2018 Oct 15.

本文引用的文献

6
Magnetic resonance temperature imaging.磁共振温度成像
Int J Hyperthermia. 2005 Sep;21(6):515-31. doi: 10.1080/02656730500133785.
9
Referenceless PRF shift thermometry.无参考的光频域反射仪频移测温法
Magn Reson Med. 2004 Jun;51(6):1223-31. doi: 10.1002/mrm.20090.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验