Suppr超能文献

基于不可忽略的检查过程,利用多状态模型分析区间删失疾病进展数据。

Analysis of interval-censored disease progression data via multi-state models under a nonignorable inspection process.

机构信息

Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.

出版信息

Stat Med. 2010 May 20;29(11):1175-89. doi: 10.1002/sim.3804.

Abstract

Irreversible multi-state models provide a convenient framework for characterizing disease processes that arise when the states represent the degree of organ or tissue damage incurred by a progressive disease. In many settings, however, individuals are only observed at periodic clinic visits and so the precise times of the transitions are not observed. If the life history and observation processes are not independent, the observation process contains information about the life history process, and more importantly, likelihoods based on the disease process alone are invalid. With interval-censored failure time data, joint models are nonidentifiable and data analysts must rely on sensitivity analyses to assess the effect of the dependent observation times. This paper is concerned, however, with the analysis of data from progressive multi-state disease processes in which individuals are scheduled to be seen at periodic pre-scheduled assessment times. We cast the problem in the framework used for incomplete longitudinal data problems. Maximum likelihood estimation via an EM algorithm is advocated for parameter estimation. Simulation studies demonstrate that the proposed method works well under a variety of situations. Data from a cohort of patients with psoriatic arthritis are analyzed for illustration.

摘要

不可逆多状态模型为描述当状态表示由进展性疾病引起的器官或组织损伤程度时出现的疾病过程提供了一个方便的框架。然而,在许多情况下,个体仅在定期临床就诊时被观察,因此无法观察到确切的状态转移时间。如果生命史和观察过程不是独立的,那么观察过程包含了有关生命史过程的信息,更重要的是,仅基于疾病过程的似然是无效的。对于区间删失失效时间数据,联合模型是不可识别的,数据分析人员必须依靠敏感性分析来评估依赖观察时间的影响。然而,本文关注的是在个体按计划在定期预定评估时间接受检查的进展性多状态疾病过程中分析数据的问题。我们将问题置于用于不完全纵向数据问题的框架中。通过 EM 算法的最大似然估计被提倡用于参数估计。模拟研究表明,该方法在各种情况下都能很好地工作。为了说明问题,我们对患有银屑病关节炎的患者队列进行了数据分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验