Suppr超能文献

具有不可忽视缺失性的非齐次马尔可夫过程的相关随机效应模型。

A Correlated Random Effects Model for Non-homogeneous Markov Processes with Nonignorable Missingness.

作者信息

Chen Baojiang, Zhou Xiao-Hua

机构信息

Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198 USA.

出版信息

J Multivar Anal. 2013 May;117:1-13. doi: 10.1016/j.jmva.2013.01.009.

Abstract

Life history data arising in clusters with prespecified assessment time points for patients often feature incomplete data since patients may choose to visit the clinic based on their needs. Markov process models provide a useful tool describing disease progression for life history data. The literature mainly focuses on time homogeneous process. In this paper we develop methods to deal with non-homogeneous Markov process with incomplete clustered life history data. A correlated random effects model is developed to deal with the nonignorable missingness, and a time transformation is employed to address the non-homogeneity in the transition model. Maximum likelihood estimate based on the Monte-Carlo EM algorithm is advocated for parameter estimation. Simulation studies demonstrate that the proposed method works well in many situations. We also apply this method to an Alzheimer's disease study.

摘要

对于患者而言,在具有预先指定评估时间点的聚类中产生的生命史数据通常存在数据不完整的情况,因为患者可能会根据自身需求选择前往诊所就诊。马尔可夫过程模型为描述生命史数据的疾病进展提供了一个有用的工具。文献主要关注时间齐次过程。在本文中,我们开发了处理具有不完整聚类生命史数据的非齐次马尔可夫过程的方法。我们开发了一个相关随机效应模型来处理不可忽略的缺失值,并采用时间变换来解决转移模型中的非齐次性。提倡基于蒙特卡罗期望最大化算法进行参数估计。模拟研究表明,所提出的方法在许多情况下都能很好地发挥作用。我们还将此方法应用于一项阿尔茨海默病研究。

相似文献

1
A Correlated Random Effects Model for Non-homogeneous Markov Processes with Nonignorable Missingness.
J Multivar Anal. 2013 May;117:1-13. doi: 10.1016/j.jmva.2013.01.009.
2
Non-homogeneous Markov process models with informative observations with an application to Alzheimer's disease.
Biom J. 2011 May;53(3):444-63. doi: 10.1002/bimj.201000122. Epub 2011 Apr 14.
3
A Two-Step Approach for Analysis of Nonignorable Missing Outcomes in Longitudinal Regression: an Application to Upstate KIDS Study.
Paediatr Perinat Epidemiol. 2017 Sep;31(5):468-478. doi: 10.1111/ppe.12382. Epub 2017 Aug 2.
4
Markov transition models for binary repeated measures with ignorable and nonignorable missing values.
Stat Methods Med Res. 2007 Aug;16(4):347-64. doi: 10.1177/0962280206071843.
5
Unfolding IRT Models for Likert-Type Items With a Don't Know Option.
Appl Psychol Meas. 2016 Oct;40(7):517-533. doi: 10.1177/0146621616664047. Epub 2016 Aug 20.
7
A semi-parametric shared parameter model to handle nonmonotone nonignorable missingness.
Biometrics. 2009 Mar;65(1):81-7. doi: 10.1111/j.1541-0420.2008.01021.x. Epub 2008 Mar 29.
8
Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.
Int J Biostat. 2017 Apr 20;13(1):/j/ijb.2017.13.issue-1/ijb-2016-0053/ijb-2016-0053.xml. doi: 10.1515/ijb-2016-0053.
9
A joint model for longitudinal and survival data based on an AR(1) latent process.
Stat Methods Med Res. 2018 May;27(5):1285-1311. doi: 10.1177/0962280216659895. Epub 2016 Sep 1.

引用本文的文献

1
Nonparametric analysis of nonhomogeneous multistate processes with clustered observations.
Biometrics. 2021 Jun;77(2):533-546. doi: 10.1111/biom.13327. Epub 2020 Jul 21.

本文引用的文献

3
A multistate model for bivariate interval-censored failure time data.
Biometrics. 2008 Dec;64(4):1100-9. doi: 10.1111/j.1541-0420.2007.00978.x. Epub 2008 Jan 24.
4
Modeling nonhomogeneous Markov processes via time transformation.
Biometrics. 2008 Sep;64(3):843-850. doi: 10.1111/j.1541-0420.2007.00932.x. Epub 2007 Nov 19.
5
Non-homogeneous Markov processes for biomedical data analysis.
Biom J. 2005 Jun;47(3):369-76. doi: 10.1002/bimj.200310114.
6
A conditional Markov model for clustered progressive multistate processes under incomplete observation.
Biometrics. 2004 Jun;60(2):436-43. doi: 10.1111/j.0006-341X.2004.00188.x.
7
The analysis of asthma control under a Markov assumption with use of covariates.
Stat Med. 2003 Dec 30;22(24):3755-70. doi: 10.1002/sim.1680.
8
Regression modeling with recurrent events and time-dependent interval-censored marker data.
Lifetime Data Anal. 2003 Sep;9(3):275-91. doi: 10.1023/a:1025888820636.
9
A generalized mover-stayer model for panel data.
Biostatistics. 2002 Sep;3(3):407-20. doi: 10.1093/biostatistics/3.3.407.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验