Chen Baojiang, Zhou Xiao-Hua
Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198 USA.
J Multivar Anal. 2013 May;117:1-13. doi: 10.1016/j.jmva.2013.01.009.
Life history data arising in clusters with prespecified assessment time points for patients often feature incomplete data since patients may choose to visit the clinic based on their needs. Markov process models provide a useful tool describing disease progression for life history data. The literature mainly focuses on time homogeneous process. In this paper we develop methods to deal with non-homogeneous Markov process with incomplete clustered life history data. A correlated random effects model is developed to deal with the nonignorable missingness, and a time transformation is employed to address the non-homogeneity in the transition model. Maximum likelihood estimate based on the Monte-Carlo EM algorithm is advocated for parameter estimation. Simulation studies demonstrate that the proposed method works well in many situations. We also apply this method to an Alzheimer's disease study.
对于患者而言,在具有预先指定评估时间点的聚类中产生的生命史数据通常存在数据不完整的情况,因为患者可能会根据自身需求选择前往诊所就诊。马尔可夫过程模型为描述生命史数据的疾病进展提供了一个有用的工具。文献主要关注时间齐次过程。在本文中,我们开发了处理具有不完整聚类生命史数据的非齐次马尔可夫过程的方法。我们开发了一个相关随机效应模型来处理不可忽略的缺失值,并采用时间变换来解决转移模型中的非齐次性。提倡基于蒙特卡罗期望最大化算法进行参数估计。模拟研究表明,所提出的方法在许多情况下都能很好地发挥作用。我们还将此方法应用于一项阿尔茨海默病研究。