Suppr超能文献

具有信息性观测的非齐次马尔可夫过程模型及其在阿尔茨海默病中的应用

Non-homogeneous Markov process models with informative observations with an application to Alzheimer's disease.

作者信息

Chen Baojiang, Zhou Xiao-Hua

机构信息

Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA.

出版信息

Biom J. 2011 May;53(3):444-63. doi: 10.1002/bimj.201000122. Epub 2011 Apr 14.

Abstract

Identifying risk factors for transition rates among normal cognition, mildly cognitive impairment, dementia and death in an Alzheimer's disease study is very important. It is known that transition rates among these states are strongly time dependent. While Markov process models are often used to describe these disease progressions, the literature mainly focuses on time homogeneous processes, and limited tools are available for dealing with non-homogeneity. Further, patients may choose when they want to visit the clinics, which creates informative observations. In this paper, we develop methods to deal with non-homogeneous Markov processes through time scale transformation when observation times are pre-planned with some observations missing. Maximum likelihood estimation via the EM algorithm is derived for parameter estimation. Simulation studies demonstrate that the proposed method works well under a variety of situations. An application to the Alzheimer's disease study identifies that there is a significant increase in transition rates as a function of time. Furthermore, our models reveal that the non-ignorable missing mechanism is perhaps reasonable.

摘要

在一项阿尔茨海默病研究中,识别正常认知、轻度认知障碍、痴呆和死亡之间转换率的风险因素非常重要。众所周知,这些状态之间的转换率强烈依赖于时间。虽然马尔可夫过程模型经常用于描述这些疾病进展,但文献主要关注时间齐次过程,并且处理非齐次性的工具有限。此外,患者可以选择何时去诊所就诊,这会产生信息性观测值。在本文中,当观测时间是预先计划好的且存在一些缺失观测值时,我们通过时间尺度变换开发了处理非齐次马尔可夫过程的方法。通过期望最大化(EM)算法进行最大似然估计以用于参数估计。模拟研究表明,所提出的方法在各种情况下都能很好地工作。对阿尔茨海默病研究的应用表明,转换率随时间有显著增加。此外,我们的模型表明不可忽略的缺失机制可能是合理的。

相似文献

1
Non-homogeneous Markov process models with informative observations with an application to Alzheimer's disease.
Biom J. 2011 May;53(3):444-63. doi: 10.1002/bimj.201000122. Epub 2011 Apr 14.
2
A Correlated Random Effects Model for Non-homogeneous Markov Processes with Nonignorable Missingness.
J Multivar Anal. 2013 May;117:1-13. doi: 10.1016/j.jmva.2013.01.009.
3
Modeling nonhomogeneous Markov processes via time transformation.
Biometrics. 2008 Sep;64(3):843-850. doi: 10.1111/j.1541-0420.2007.00932.x. Epub 2007 Nov 19.
5
Order selection for heterogeneous semiparametric hidden Markov models.
Stat Med. 2024 Jun 15;43(13):2501-2526. doi: 10.1002/sim.10069. Epub 2024 Apr 15.
6
Bayesian hidden Markov models for delineating the pathology of Alzheimer's disease.
Stat Methods Med Res. 2019 Jul;28(7):2112-2124. doi: 10.1177/0962280217748675. Epub 2017 Dec 26.
8
Non-homogeneous Markov processes for biomedical data analysis.
Biom J. 2005 Jun;47(3):369-76. doi: 10.1002/bimj.200310114.
10
Flexible multistate models for interval-censored data: Specification, estimation, and an application to ageing research.
Stat Med. 2018 May 10;37(10):1636-1649. doi: 10.1002/sim.7604. Epub 2018 Jan 31.

引用本文的文献

本文引用的文献

3
A multistate model for bivariate interval-censored failure time data.
Biometrics. 2008 Dec;64(4):1100-9. doi: 10.1111/j.1541-0420.2007.00978.x. Epub 2008 Jan 24.
4
Modeling nonhomogeneous Markov processes via time transformation.
Biometrics. 2008 Sep;64(3):843-850. doi: 10.1111/j.1541-0420.2007.00932.x. Epub 2007 Nov 19.
5
The National Alzheimer's Coordinating Center (NACC) database: the Uniform Data Set.
Alzheimer Dis Assoc Disord. 2007 Jul-Sep;21(3):249-58. doi: 10.1097/WAD.0b013e318142774e.
7
Non-homogeneous Markov processes for biomedical data analysis.
Biom J. 2005 Jun;47(3):369-76. doi: 10.1002/bimj.200310114.
8
A conditional Markov model for clustered progressive multistate processes under incomplete observation.
Biometrics. 2004 Jun;60(2):436-43. doi: 10.1111/j.0006-341X.2004.00188.x.
9
The analysis of asthma control under a Markov assumption with use of covariates.
Stat Med. 2003 Dec 30;22(24):3755-70. doi: 10.1002/sim.1680.
10
Regression modeling with recurrent events and time-dependent interval-censored marker data.
Lifetime Data Anal. 2003 Sep;9(3):275-91. doi: 10.1023/a:1025888820636.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验