Suppr超能文献

具有信息性观测的非齐次马尔可夫过程模型及其在阿尔茨海默病中的应用

Non-homogeneous Markov process models with informative observations with an application to Alzheimer's disease.

作者信息

Chen Baojiang, Zhou Xiao-Hua

机构信息

Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA.

出版信息

Biom J. 2011 May;53(3):444-63. doi: 10.1002/bimj.201000122. Epub 2011 Apr 14.

Abstract

Identifying risk factors for transition rates among normal cognition, mildly cognitive impairment, dementia and death in an Alzheimer's disease study is very important. It is known that transition rates among these states are strongly time dependent. While Markov process models are often used to describe these disease progressions, the literature mainly focuses on time homogeneous processes, and limited tools are available for dealing with non-homogeneity. Further, patients may choose when they want to visit the clinics, which creates informative observations. In this paper, we develop methods to deal with non-homogeneous Markov processes through time scale transformation when observation times are pre-planned with some observations missing. Maximum likelihood estimation via the EM algorithm is derived for parameter estimation. Simulation studies demonstrate that the proposed method works well under a variety of situations. An application to the Alzheimer's disease study identifies that there is a significant increase in transition rates as a function of time. Furthermore, our models reveal that the non-ignorable missing mechanism is perhaps reasonable.

摘要

在一项阿尔茨海默病研究中,识别正常认知、轻度认知障碍、痴呆和死亡之间转换率的风险因素非常重要。众所周知,这些状态之间的转换率强烈依赖于时间。虽然马尔可夫过程模型经常用于描述这些疾病进展,但文献主要关注时间齐次过程,并且处理非齐次性的工具有限。此外,患者可以选择何时去诊所就诊,这会产生信息性观测值。在本文中,当观测时间是预先计划好的且存在一些缺失观测值时,我们通过时间尺度变换开发了处理非齐次马尔可夫过程的方法。通过期望最大化(EM)算法进行最大似然估计以用于参数估计。模拟研究表明,所提出的方法在各种情况下都能很好地工作。对阿尔茨海默病研究的应用表明,转换率随时间有显著增加。此外,我们的模型表明不可忽略的缺失机制可能是合理的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7527/3631600/1d271e1aab75/nihms444788f1.jpg

相似文献

3
Modeling nonhomogeneous Markov processes via time transformation.通过时间变换对非齐次马尔可夫过程进行建模。
Biometrics. 2008 Sep;64(3):843-850. doi: 10.1111/j.1541-0420.2007.00932.x. Epub 2007 Nov 19.

本文引用的文献

3
A multistate model for bivariate interval-censored failure time data.用于双变量区间删失失效时间数据的多状态模型。
Biometrics. 2008 Dec;64(4):1100-9. doi: 10.1111/j.1541-0420.2007.00978.x. Epub 2008 Jan 24.
4
Modeling nonhomogeneous Markov processes via time transformation.通过时间变换对非齐次马尔可夫过程进行建模。
Biometrics. 2008 Sep;64(3):843-850. doi: 10.1111/j.1541-0420.2007.00932.x. Epub 2007 Nov 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验