Suppr超能文献

随血流生长:流动状态下血小板沉积与血液凝固的时空模型

Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow.

作者信息

Leiderman Karin, Fogelson Aaron L

机构信息

Department of Mathematics, University of Utah, 155 South 1400 East, Room 233, Salt Lake City, UT 84112-0090, USA.

出版信息

Math Med Biol. 2011 Mar;28(1):47-84. doi: 10.1093/imammb/dqq005. Epub 2010 May 3.

Abstract

The body's response to vascular injury involves two intertwined processes: platelet aggregation and coagulation. Platelet aggregation is a predominantly physical process, whereby platelets clump together, and coagulation is a cascade of biochemical enzyme reactions. Thrombin, the major product of coagulation, directly couples the biochemical system to platelet aggregation by activating platelets and by cleaving fibrinogen into fibrin monomers that polymerize to form a mesh that stabilizes platelet aggregates. Together, the fibrin mesh and the platelet aggregates comprise a thrombus that can grow to occlusive diameters. Transport of coagulation proteins and platelets to and from an injury is controlled largely by the dynamics of the blood flow. To explore how blood flow affects the growth of thrombi and how the growing masses, in turn, feed back and affect the flow, we have developed the first spatial-temporal mathematical model of platelet aggregation and blood coagulation under flow that includes detailed descriptions of coagulation biochemistry, chemical activation and deposition of blood platelets, as well as the two-way interaction between the fluid dynamics and the growing platelet mass. We present this model and use it to explain what underlies the threshold behaviour of the coagulation system's production of thrombin and to show how wall shear rate and near-wall enhanced platelet concentrations affect the development of growing thrombi. By accounting for the porous nature of the thrombus, we also demonstrate how advective and diffusive transport to and within the thrombus affects its growth at different stages and spatial locations.

摘要

机体对血管损伤的反应涉及两个相互交织的过程

血小板聚集和凝血。血小板聚集主要是一个物理过程,即血小板聚集在一起,而凝血是一系列生化酶反应。凝血的主要产物凝血酶通过激活血小板并将纤维蛋白原裂解为纤维蛋白单体,使纤维蛋白单体聚合成网状结构以稳定血小板聚集体,从而将生化系统与血小板聚集直接联系起来。纤维蛋白网和血小板聚集体共同构成血栓,血栓可生长至阻塞血管直径。凝血蛋白和血小板往返于损伤部位的运输在很大程度上受血流动力学控制。为了探究血流如何影响血栓的生长,以及生长的血栓如何反过来反馈并影响血流,我们开发了首个在血流状态下血小板聚集和血液凝固的时空数学模型,该模型详细描述了凝血生物化学、血小板的化学激活和沉积,以及流体动力学与生长的血小板团块之间的双向相互作用。我们展示这个模型,并利用它来解释凝血系统产生凝血酶的阈值行为的潜在机制,以及壁面切应力和近壁处血小板浓度增加如何影响生长血栓的发展。通过考虑血栓的多孔性质,我们还展示了血栓内外的平流和扩散运输如何在不同阶段和空间位置影响其生长。

相似文献

1
Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow.
Math Med Biol. 2011 Mar;28(1):47-84. doi: 10.1093/imammb/dqq005. Epub 2010 May 3.
2
The influence of hindered transport on the development of platelet thrombi under flow.
Bull Math Biol. 2013 Aug;75(8):1255-83. doi: 10.1007/s11538-012-9784-3. Epub 2012 Oct 25.
3
A General Shear-Dependent Model for Thrombus Formation.
PLoS Comput Biol. 2017 Jan 17;13(1):e1005291. doi: 10.1371/journal.pcbi.1005291. eCollection 2017 Jan.
7
Modelling of platelet-fibrin clot formation in flow with a DPD-PDE method.
J Math Biol. 2016 Feb;72(3):649-81. doi: 10.1007/s00285-015-0891-2. Epub 2015 May 24.
9
Procoagulant activity on platelets adhered to collagen or plasma clot.
Arterioscler Thromb Vasc Biol. 2001 Apr;21(4):628-35. doi: 10.1161/01.atv.21.4.628.

引用本文的文献

2
The impact of clot permeability on platelet fluxes toward its surface.
PLoS One. 2025 Mar 25;20(3):e0317828. doi: 10.1371/journal.pone.0317828. eCollection 2025.
3
Mathematical modeling identifies clotting factor combinations that modify thrombin generation in normal and factor VIII-, IX-, or XI-deficient blood.
Res Pract Thromb Haemost. 2024 Sep 12;8(7):102570. doi: 10.1016/j.rpth.2024.102570. eCollection 2024 Oct.
4
Coagulo-Net: Enhancing the mathematical modeling of blood coagulation using physics-informed neural networks.
Neural Netw. 2024 Dec;180:106732. doi: 10.1016/j.neunet.2024.106732. Epub 2024 Sep 19.
5
A continuum model for the elongation and orientation of Von Willebrand factor with applications in arterial flow.
Biomech Model Mechanobiol. 2024 Aug;23(4):1299-1317. doi: 10.1007/s10237-024-01840-8. Epub 2024 Apr 9.
6
A homogenized two-phase computational framework for meso- and macroscale blood flow simulations.
Comput Methods Programs Biomed. 2024 Apr;247:108090. doi: 10.1016/j.cmpb.2024.108090. Epub 2024 Feb 16.
8
Efficient multi-fidelity computation of blood coagulation under flow.
PLoS Comput Biol. 2023 Oct 27;19(10):e1011583. doi: 10.1371/journal.pcbi.1011583. eCollection 2023 Oct.
9
clotFoam: An open-source framework to simulate blood clot formation under arterial flow.
SoftwareX. 2023 Jul;23. doi: 10.1016/j.softx.2023.101483. Epub 2023 Aug 3.
10
A computational investigation of occlusive arterial thrombosis.
Biomech Model Mechanobiol. 2024 Feb;23(1):157-178. doi: 10.1007/s10237-023-01765-8. Epub 2023 Sep 13.

本文引用的文献

2
The effects of spatial inhomogeneities on flow through the endothelial surface layer.
J Theor Biol. 2008 May 21;252(2):313-25. doi: 10.1016/j.jtbi.2008.01.013. Epub 2008 Jan 26.
4
A multiscale model of thrombus development.
J R Soc Interface. 2008 Jul 6;5(24):705-22. doi: 10.1098/rsif.2007.1202.
5
Adhesion mechanisms in platelet function.
Circ Res. 2007 Jun 22;100(12):1673-85. doi: 10.1161/01.RES.0000267878.97021.ab.
6
The growing complexity of platelet aggregation.
Blood. 2007 Jun 15;109(12):5087-95. doi: 10.1182/blood-2006-12-027698. Epub 2007 Feb 20.
7
Blood coagulation and propagation of autowaves in flow.
Pathophysiol Haemost Thromb. 2005;34(2-3):135-42. doi: 10.1159/000089933.
8
The effect of convective flows on blood coagulation processes.
Pathophysiol Haemost Thromb. 2005;34(2-3):121-34. doi: 10.1159/000089932.
10
What does it take to make the perfect clot?
Arterioscler Thromb Vasc Biol. 2006 Jan;26(1):41-8. doi: 10.1161/01.ATV.0000193624.28251.83. Epub 2005 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验