Yazdani Alireza, Li He, Humphrey Jay D, Karniadakis George Em
Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America.
Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America.
PLoS Comput Biol. 2017 Jan 17;13(1):e1005291. doi: 10.1371/journal.pcbi.1005291. eCollection 2017 Jan.
Modeling the transport, activation, and adhesion of platelets is crucial in predicting thrombus formation and growth following a thrombotic event in normal or pathological conditions. We propose a shear-dependent platelet adhesive model based on the Morse potential that is calibrated by existing in vivo and in vitro experimental data and can be used over a wide range of flow shear rates ([Formula: see text]). We introduce an Eulerian-Lagrangian model where hemodynamics is solved on a fixed Eulerian grid, while platelets are tracked using a Lagrangian framework. A force coupling method is introduced for bidirectional coupling of platelet motion with blood flow. Further, we couple the calibrated platelet aggregation model with a tissue-factor/contact pathway coagulation cascade, representing the relevant biology of thrombin generation and the subsequent fibrin deposition. The range of shear rates covered by the proposed model encompass venous and arterial thrombosis, ranging from low-shear-rate conditions in abdominal aortic aneurysms and thoracic aortic dissections to thrombosis in stenotic arteries following plaque rupture, where local shear rates are extremely high.
对血小板的运输、激活和黏附进行建模对于预测正常或病理条件下血栓形成事件后的血栓形成和生长至关重要。我们提出了一种基于莫尔斯势的剪切依赖型血小板黏附模型,该模型通过现有的体内和体外实验数据进行校准,并且可以在很宽的流动剪切速率范围内使用([公式:见正文])。我们引入了一种欧拉 - 拉格朗日模型,其中血液动力学在固定的欧拉网格上求解,而血小板则使用拉格朗日框架进行跟踪。引入了一种力耦合方法,用于血小板运动与血流的双向耦合。此外,我们将校准后的血小板聚集模型与组织因子/接触途径凝血级联反应耦合,代表凝血酶生成及随后纤维蛋白沉积的相关生物学过程。所提出模型涵盖的剪切速率范围包括静脉和动脉血栓形成,从腹主动脉瘤和胸主动脉夹层的低剪切速率情况到斑块破裂后狭窄动脉中的血栓形成,其中局部剪切速率极高。