Shankar Kaushik N, Sinno Talid, Diamond Scott L
Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
PLoS Comput Biol. 2025 May 6;21(5):e1013085. doi: 10.1371/journal.pcbi.1013085. eCollection 2025 May.
During thrombosis, platelets rapidly deposit and activate on the vessel wall, driving conditions such as myocardial infarction and stroke. The complexity of thrombus formation in pathological flow geometries, along with patient-specific pharmacological responses, presents an opportunity for computational modeling to help deliver novel diagnostic and therapeutic insights. In the present study, we employed a multiscale 3D computational model that incorporates unique donor-derived neural networks (NNs) trained with platelet calcium mobilization traces under combinatorial exposure to 6 agonists (n = 10 donors). The 3D model comprises four modules: a donor-specific NN model for platelet calcium mobilization, a lattice kinetic Monte Carlo solver for tracking platelet motion and bonding, a finite volume method solver for modeling soluble agonist release and convective-diffusive transport, and a lattice Boltzmann method solver for predicting the blood velocity field. Simulations were conducted for platelets from individual blood donors under venous and arterial flow conditions on a defined collagen surface, examining the effects of inhibiting ADP and TXA2, as well as the influence of nitric oxide and prostacyclin. The results reveal significant individual variability in platelet responses, influencing simulated thrombus growth dynamics and emphasizing the importance of personalized models for predicting thrombotic behavior. This approach enables consideration of patient-specific platelet signaling, drug responses, and vascular geometry for predicting thrombotic episodes, essential for advancing precision medicine and improving patient outcomes in thrombotic conditions.
在血栓形成过程中,血小板会迅速沉积并在血管壁上激活,引发心肌梗死和中风等病症。病理血流几何形状中血栓形成的复杂性,以及患者特异性的药理反应,为计算建模提供了契机,有助于提供新颖的诊断和治疗见解。在本研究中,我们采用了一种多尺度三维计算模型,该模型纳入了独特的供体衍生神经网络(NNs),这些神经网络是在组合暴露于6种激动剂(n = 10个供体)的情况下,用血小板钙动员轨迹进行训练的。该三维模型包括四个模块:用于血小板钙动员的供体特异性神经网络模型、用于跟踪血小板运动和结合的格子动力学蒙特卡罗求解器、用于模拟可溶性激动剂释放和对流扩散传输的有限体积法求解器,以及用于预测血流速度场的格子玻尔兹曼法求解器。在定义的胶原蛋白表面上,针对个体献血者的血小板在静脉和动脉血流条件下进行了模拟,研究了抑制二磷酸腺苷(ADP)和血栓素A2(TXA2)的效果,以及一氧化氮和前列环素的影响。结果揭示了血小板反应中显著的个体差异,影响了模拟血栓生长动力学,并强调了个性化模型对预测血栓形成行为的重要性。这种方法能够考虑患者特异性的血小板信号传导、药物反应和血管几何形状来预测血栓形成事件,这对于推进精准医学和改善血栓形成病症患者的预后至关重要。