Suppr超能文献

均相两相计算框架用于中尺度和大尺度血流模拟。

A homogenized two-phase computational framework for meso- and macroscale blood flow simulations.

机构信息

Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA.

Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS, USA.

出版信息

Comput Methods Programs Biomed. 2024 Apr;247:108090. doi: 10.1016/j.cmpb.2024.108090. Epub 2024 Feb 16.

Abstract

BACKGROUND AND OBJECTIVE

Owing to the complexity of physics linked with blood flow and its associated phenomena, appropriate modeling of the multi-constituent rheology of blood is of primary importance. To this effect, various kinds of computational fluid dynamic models have been developed, each with merits and limitations. However, when additional physics like thrombosis and embolization is included within the framework of these models, computationally efficient scalable translation becomes very difficult. Therefore, this paper presents a homogenized two-phase blood flow framework with similar characteristics to a single fluid model but retains the flow resolution of a classical two-fluid model. The presented framework is validated against four different sets of experiments.

METHODS

The two-phase model of blood presented here is based on the classical diffusion-flux framework. Diffusion flux models are known to be less computationally expensive than two-fluid multiphase models since the numerical implementation resembles single-phase flow models. Diffusion flux models typically use empirical slip velocity correlations to resolve the motion between phases. However, such correlations do not exist for blood. Therefore, a modified slip velocity equation is proposed, derived rigorously from the two-fluid governing equations. An additional drag law for red blood cells (RBCs) as a function of volume fraction is evaluated using a previously published cell-resolved solver. A new hematocrit-dependent expression for lift force on RBCs is proposed. The final governing equations are discretized and solved using the open-source software OpenFOAM.

RESULTS

The framework is validated against four sets of experiments: (i) flow through a rectangular microchannel to validate RBC velocity profiles against experimental measurements and compare computed hematocrit distributions against previously reported simulation results (ii) flow through a sudden expansion microchannel for comparing experimentally obtained contours of hematocrit distributions and normalized cell-free region length obtained at different flowrates and inlet hematocrits, (iii) flow through two hyperbolic channels to evaluate model predictions of cell-free layer thickness, and (iv) flow through a microchannel that mimics crevices of a left ventricular assist device to predict hematocrit distributions observed experimentally. The simulation results exhibit good agreement with the results of all four experiments.

CONCLUSION

The computational framework presented in this paper has the advantage of resolving the multiscale physics of blood flow while still leveraging numerical techniques used for solving single-phase flows. Therefore, it becomes an excellent candidate for addressing more complicated problems related to blood flow, such as modeling mechanical entrapment of RBCs within blood clots, predicting thrombus composition, and visualizing clot embolization.

摘要

背景与目的

由于血流及其相关现象与物理复杂性相关联,因此对血液的多成分流变学进行适当建模至关重要。为此,已经开发了各种计算流体动力学模型,每种模型都有其优点和局限性。但是,当在这些模型的框架内包含诸如血栓形成和栓塞等其他物理现象时,计算效率的可扩展性翻译就变得非常困难。因此,本文提出了一种均质化的两相血流框架,该框架具有类似于单相流模型的特征,但保留了经典两相流模型的流分辨率。该框架已通过四组不同的实验进行了验证。

方法

本文提出的血液两相模型基于经典的扩散通量框架。扩散通量模型的计算成本低于两相多相模型,因为数值实现类似于单相流模型。扩散通量模型通常使用经验滑移速度相关性来解决两相之间的运动。但是,对于血液而言,不存在这样的相关性。因此,提出了一种经过修正的滑移速度方程,该方程是从两相控制方程严格推导得出的。还评估了一种新的红细胞(RBC)阻力定律,该定律是作为红细胞体积分数的函数。提出了一种新的红细胞升力表达式,该表达式依赖于血细胞比容。最后,使用开源软件 OpenFOAM 对控制方程进行离散和求解。

结果

该框架已通过四组实验进行了验证:(i)通过矩形微通道的流动,以验证 RBC 速度分布与实验测量结果,并比较计算得到的血细胞比容分布与先前报道的模拟结果;(ii)通过突然扩张的微通道的流动,比较实验获得的血细胞比容分布轮廓和在不同流量和入口血细胞比容下获得的无细胞区域长度的归一化值;(iii)通过双曲形通道的流动,评估无细胞层厚度的模型预测值;(iv)通过模拟左心室辅助装置缝隙的微通道的流动,预测实验观察到的血细胞比容分布。模拟结果与所有四项实验的结果吻合良好。

结论

本文提出的计算框架具有解析血流多尺度物理特性的优势,同时仍然利用了用于求解单相流的数值技术。因此,它成为解决与血流相关的更复杂问题的优秀候选方案,例如模拟 RBC 在血液凝块中的机械捕获,预测血栓成分以及可视化血栓栓塞。

相似文献

1
A homogenized two-phase computational framework for meso- and macroscale blood flow simulations.
Comput Methods Programs Biomed. 2024 Apr;247:108090. doi: 10.1016/j.cmpb.2024.108090. Epub 2024 Feb 16.
2
Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation.
Comput Methods Programs Biomed. 2022 Nov;226:107117. doi: 10.1016/j.cmpb.2022.107117. Epub 2022 Sep 13.
4
Unresolved RBCs: An upscaling strategy for the CFD-DEM simulation of blood flow with deformable cells.
Comput Biol Med. 2024 Oct;181:109081. doi: 10.1016/j.compbiomed.2024.109081. Epub 2024 Aug 28.
5
Non-Newtonian flow of blood in arterioles: consequences for wall shear stress measurements.
Microcirculation. 2014 Oct;21(7):628-39. doi: 10.1111/micc.12141.
6
A numerical study of plasma skimming in small vascular bifurcations.
J Biomech Eng. 1994 Feb;116(1):79-88. doi: 10.1115/1.2895708.
7
Multiscale modeling of hemolysis during microfiltration.
Microfluid Nanofluidics. 2020 May;24(5). doi: 10.1007/s10404-020-02337-3. Epub 2020 Apr 10.
8
Investigation of red blood cell partitioning in an in vitro microvascular bifurcation.
Artif Organs. 2021 Sep;45(9):1083-1096. doi: 10.1111/aor.13941. Epub 2021 Apr 8.
9
Effect of particle collisions and aggregation on red blood cell passage through a bifurcation.
Microvasc Res. 2009 Dec;78(3):301-13. doi: 10.1016/j.mvr.2009.09.003. Epub 2009 Sep 17.
10
Effect of Varying Viscosity on Two-Fluid Model of Blood Flow through Constricted Blood Vessels: A Comparative Study.
Cardiovasc Eng Technol. 2019 Mar;10(1):155-172. doi: 10.1007/s13239-018-00379-x. Epub 2018 Oct 9.

引用本文的文献

1
Viscosity Modeling for Blood and Blood Analog Fluids in Narrow Gap and High Reynolds Numbers Flows.
Micromachines (Basel). 2024 Jun 16;15(6):793. doi: 10.3390/mi15060793.

本文引用的文献

1
Clot embolization studies and computational framework for embolization in a canonical tube model.
Sci Rep. 2023 Sep 6;13(1):14682. doi: 10.1038/s41598-023-41825-8.
2
A cell-resolved, Lagrangian solver for modeling red blood cell dynamics in macroscale flows.
J Comput Phys. 2022 Jul 15;461. doi: 10.1016/j.jcp.2022.111204. Epub 2022 Apr 8.
3
Toward modeling thrombosis and thromboembolism in laminar and turbulent flow regimes.
Int J Numer Method Biomed Eng. 2022 Oct;38(10):e3638. doi: 10.1002/cnm.3638. Epub 2022 Aug 14.
4
A fibrin enhanced thrombosis model for medical devices operating at low shear regimes or large surface areas.
PLoS Comput Biol. 2022 Oct 3;18(10):e1010277. doi: 10.1371/journal.pcbi.1010277. eCollection 2022 Oct.
5
Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation.
Comput Methods Programs Biomed. 2022 Nov;226:107117. doi: 10.1016/j.cmpb.2022.107117. Epub 2022 Sep 13.
6
Mathematical and Computational Modeling of Device-Induced Thrombosis.
Curr Opin Biomed Eng. 2021 Dec;20. doi: 10.1016/j.cobme.2021.100349. Epub 2021 Sep 28.
7
Recent advances in blood rheology: a review.
Soft Matter. 2021 Dec 8;17(47):10591-10613. doi: 10.1039/d1sm01212f.
8
Simulation of blood flow in a sudden expansion channel and a coronary artery.
J Comput Appl Math. 2020 Oct;376. doi: 10.1016/j.cam.2020.112856. Epub 2020 Mar 19.
9
Clot Composition Analysis as a Diagnostic Tool to Gain Insight into Ischemic Stroke Etiology: A Systematic Review.
J Stroke. 2021 Sep;23(3):327-342. doi: 10.5853/jos.2021.02306. Epub 2021 Sep 30.
10
Simulation of thrombosis in a stenotic microchannel: The effects of vWF-enhanced shear activation of platelets.
Int J Eng Sci. 2020 Feb;147. doi: 10.1016/j.ijengsci.2019.103206. Epub 2019 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验