Suppr超能文献

海藻糖生物合成在烟曲霉发育、应激反应和毒力中的作用。

Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence.

机构信息

Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.

出版信息

Infect Immun. 2010 Jul;78(7):3007-18. doi: 10.1128/IAI.00813-09. Epub 2010 May 3.

Abstract

Aspergillus fumigatus is a pathogenic mold which causes invasive, often fatal, pulmonary disease in immunocompromised individuals. Recently, proteins involved in the biosynthesis of trehalose have been linked with virulence in other pathogenic fungi. We found that the trehalose content increased during the developmental life cycle of A. fumigatus, throughout which putative trehalose synthase genes tpsA and tpsB were significantly expressed. The trehalose content of A. fumigatus hyphae also increased after heat shock but not in response to other stressors. This increase in trehalose directly correlated with an increase in expression of tpsB but not tpsA. However, deletion of both tpsA and tpsB was required to block trehalose accumulation during development and heat shock. The DeltatpsAB double mutant had delayed germination at 37 degrees C, suggesting a developmental defect. At 50 degrees C, the majority of DeltatpsAB spores were found to be nonviable, and those that were viable had severely delayed germination, growth, and subsequent sporulation. DeltatpsAB spores were also susceptible to oxidative stress. Surprisingly, the DeltatpsAB double mutant was hypervirulent in a murine model of invasive aspergillosis, and this increased virulence was associated with alterations in the cell wall and resistance to macrophage phagocytosis. Thus, while trehalose biosynthesis is required for a number of biological processes that both promote and inhibit virulence, in A. fumigatus the predominant effect is a reduction in pathogenicity. This finding contrasts sharply with those for other fungi, in which trehalose biosynthesis acts to enhance virulence.

摘要

烟曲霉是一种致病性霉菌,可导致免疫功能低下个体发生侵袭性、常致命的肺部疾病。最近,与其他致病性真菌的毒力有关的海藻糖生物合成相关蛋白已被发现。我们发现,在烟曲霉的发育生命周期中,海藻糖含量增加,在此过程中,假定的海藻糖合酶基因 tpsA 和 tpsB 表达显著。烟曲霉菌丝在热休克后海藻糖含量也增加,但对其他应激源没有反应。海藻糖含量的增加与 tpsB 表达的增加直接相关,但与 tpsA 无关。然而,只有删除 tpsA 和 tpsB 才能阻止发育和热休克过程中海藻糖的积累。DeltatpsAB 双突变体在 37°C 时发芽延迟,表明存在发育缺陷。在 50°C 时,发现大多数 DeltatpsAB 孢子无法存活,而那些能够存活的孢子发芽、生长和随后的产孢都严重延迟。DeltatpsAB 孢子也易受氧化应激影响。令人惊讶的是,DeltatpsAB 双突变体在侵袭性曲霉病的小鼠模型中具有高致病性,这种增加的毒力与细胞壁的改变和对巨噬细胞吞噬作用的抵抗有关。因此,虽然海藻糖生物合成对于促进和抑制毒力的许多生物学过程都是必需的,但在烟曲霉中,主要作用是降低致病性。这一发现与其他真菌形成鲜明对比,在其他真菌中,海藻糖生物合成可增强毒力。

相似文献

1
Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence.
Infect Immun. 2010 Jul;78(7):3007-18. doi: 10.1128/IAI.00813-09. Epub 2010 May 3.
9
The Gene Is Required for the Growth and Virulence of the Human Pathogenic Fungus Aspergillus fumigatus.
Microbiol Spectr. 2022 Feb 23;10(1):e0155821. doi: 10.1128/spectrum.01558-21. Epub 2022 Feb 2.
10
Molecular characterization of the putative transcription factor SebA involved in virulence in Aspergillus fumigatus.
Eukaryot Cell. 2012 Apr;11(4):518-31. doi: 10.1128/EC.00016-12. Epub 2012 Feb 17.

引用本文的文献

2
Developing the trehalose biosynthesis pathway as an antifungal drug target.
NPJ Antimicrob Resist. 2025 Apr 14;3(1):30. doi: 10.1038/s44259-025-00095-2.
3
Structural and Mutational Analyses of Trehalose Synthase from Reveal the Interconversion of Maltose-Trehalose Mechanism.
J Agric Food Chem. 2024 Aug 21;72(33):18649-18657. doi: 10.1021/acs.jafc.4c03661. Epub 2024 Aug 7.
4
Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen : A target for antifungals.
Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2314087121. doi: 10.1073/pnas.2314087121. Epub 2024 Jul 31.
5
trehalose-6-phosphate synthase (tps1) promotes organ-specific virulence and fungal protection against multiple lines of host defenses.
Front Cell Infect Microbiol. 2024 May 22;14:1392015. doi: 10.3389/fcimb.2024.1392015. eCollection 2024.
6
Pleiotropic functions of SscA on the asexual spore of the human pathogenic fungus .
Mycology. 2023 Dec 25;15(2):238-254. doi: 10.1080/21501203.2023.2294061. eCollection 2024.
7
Intracellular Protective Functions and Therapeutical Potential of Trehalose.
Molecules. 2024 May 1;29(9):2088. doi: 10.3390/molecules29092088.
8
Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans.
BMC Microbiol. 2024 Feb 27;24(1):66. doi: 10.1186/s12866-024-03213-8.
9
Compatible solutes determine the heat resistance of conidia.
Fungal Biol Biotechnol. 2023 Nov 13;10(1):21. doi: 10.1186/s40694-023-00168-9.
10
Assessing the intracellular primary metabolic profile of grown on different carbon sources.
Front Fungal Biol. 2022 Sep 27;3:998361. doi: 10.3389/ffunb.2022.998361. eCollection 2022.

本文引用的文献

1
The Aspergillus fumigatus transcription factor Ace2 governs pigment production, conidiation and virulence.
Mol Microbiol. 2009 Apr;72(1):155-69. doi: 10.1111/j.1365-2958.2009.06631.x. Epub 2009 Feb 11.
3
Sub-telomere directed gene expression during initiation of invasive aspergillosis.
PLoS Pathog. 2008 Sep 12;4(9):e1000154. doi: 10.1371/journal.ppat.1000154.
4
6
Comparative in vitro pharmacodynamics of caspofungin, micafungin, and anidulafungin against germinated and nongerminated Aspergillus conidia.
Antimicrob Agents Chemother. 2008 Jan;52(1):321-8. doi: 10.1128/AAC.00699-07. Epub 2007 Oct 15.
7
Role of trehalose in resistance to macrophage killing: study with a tps1/tps1 trehalose-deficient mutant of Candida albicans.
Clin Microbiol Infect. 2007 Apr;13(4):384-94. doi: 10.1111/j.1469-0691.2007.01663.x.
8
Concentration-dependent effects of caspofungin on the metabolic activity of Aspergillus species.
Antimicrob Agents Chemother. 2007 Mar;51(3):881-7. doi: 10.1128/AAC.01160-06. Epub 2006 Dec 4.
9
Aspergillus fumigatus: growth and virulence.
Med Mycol. 2006 Sep;44 Suppl 1:S77-81. doi: 10.1080/13693780600779419.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验