Suppr超能文献

具有不同 Cajal 间质细胞网络的野生型和 5-HT(2B)敲除小鼠慢波传入的组织特异性数学模型。

Tissue-specific mathematical models of slow wave entrainment in wild-type and 5-HT(2B) knockout mice with altered interstitial cells of Cajal networks.

机构信息

Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.

出版信息

Biophys J. 2010 May 19;98(9):1772-81. doi: 10.1016/j.bpj.2010.01.009.

Abstract

Gastrointestinal slow waves are generated within networks of interstitial cells of Cajal (ICCs). In the intact tissue, slow waves are entrained to neighboring ICCs with higher intrinsic frequencies, leading to active propagation of slow waves. Degradation of ICC networks in humans is associated with motility disorders; however, the pathophysiological mechanisms of this relationship are uncertain. A recently developed biophysically based mathematical model of ICC was adopted and updated to simulate entrainment of slow waves. Simulated slow wave propagation was successfully entrained in a one-dimensional model, which contained a gradient of intrinsic frequencies. Slow wave propagation was then simulated in tissue models which contained a realistic two-dimensional microstructure of the myenteric ICC networks translated from wild-type (WT) and 5-HT(2B) knockout (degraded) mouse jejunum. The results showed that the peak current density in the WT model was 0.49 muA mm(-2) higher than the 5-HT(2B) knockout model, and the intracellular Ca(2+) density after 400 ms was 0.26 mM mm(-2) higher in the WT model. In conclusion, tissue-specific models of slow waves are presented, and simulations quantitatively demonstrated physiological differences between WT and 5-HT(2B) knockout models. This study provides a framework for evaluating how ICC network degradation may impair slow wave propagation and ultimately motility and transit.

摘要

胃肠慢波是在 Cajal 间质细胞(ICC)网络中产生的。在完整的组织中,慢波被相邻具有较高固有频率的 ICC 捕获,导致慢波的主动传播。人类 ICC 网络的退化与运动障碍有关;然而,这种关系的病理生理机制尚不确定。最近开发的基于生物物理的 ICC 数学模型被采用并更新以模拟慢波的捕获。在一维模型中成功地模拟了慢波的传播,该模型包含固有频率的梯度。然后,在包含从野生型(WT)和 5-HT(2B)敲除(退化)小鼠空肠翻译的真实二维肌间 ICC 网络微观结构的组织模型中模拟了慢波的传播。结果表明,WT 模型中的峰值电流密度比 5-HT(2B)敲除模型高 0.49 muA mm(-2),WT 模型中的细胞内 Ca(2+)密度在 400 ms 后高 0.26 mM mm(-2)。总之,呈现了慢波的组织特异性模型,并且模拟定量地证明了 WT 和 5-HT(2B)敲除模型之间的生理差异。这项研究为评估 ICC 网络退化如何损害慢波传播并最终损害运动和转运提供了一个框架。

相似文献

2
Lack of serotonin 5-HT2B receptor alters proliferation and network volume of interstitial cells of Cajal in vivo.
Neurogastroenterol Motil. 2010 Apr;22(4):462-9, e109-10. doi: 10.1111/j.1365-2982.2009.01435.x. Epub 2009 Nov 26.
3
Conditional genetic deletion of Ano1 in interstitial cells of Cajal impairs Ca transients and slow waves in adult mouse small intestine.
Am J Physiol Gastrointest Liver Physiol. 2017 Mar 1;312(3):G228-G245. doi: 10.1152/ajpgi.00363.2016. Epub 2016 Dec 15.
4
Characterization of slow waves generated by myenteric interstitial cells of Cajal of the rabbit small intestine.
Am J Physiol Gastrointest Liver Physiol. 2015 Mar 1;308(5):G378-88. doi: 10.1152/ajpgi.00308.2014. Epub 2014 Dec 24.
5
Expression and function of a T-type Ca2+ conductance in interstitial cells of Cajal of the murine small intestine.
Am J Physiol Cell Physiol. 2014 Apr 1;306(7):C705-13. doi: 10.1152/ajpcell.00390.2013. Epub 2014 Jan 29.
6
A simplified biophysical cell model for gastric slow wave entrainment simulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6547-50. doi: 10.1109/EMBC.2013.6611055.
7
Extensive projections of myenteric serotonergic neurons suggest they comprise the central processing unit in the colon.
Neurogastroenterol Motil. 2014 Apr;26(4):556-70. doi: 10.1111/nmo.12302. Epub 2014 Jan 26.
8
Cellular automaton model for simulating tissue-specific intestinal electrophysiological activity.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5537-40. doi: 10.1109/EMBC.2013.6610804.
9
A stochastic multi-scale model of electrical function in normal and depleted ICC networks.
IEEE Trans Biomed Eng. 2011 Dec;58(12):3451-5. doi: 10.1109/TBME.2011.2164248. Epub 2011 Aug 12.
10
LRIG1 Regulates Ontogeny of Smooth Muscle-Derived Subsets of Interstitial Cells of Cajal in Mice.
Gastroenterology. 2015 Aug;149(2):407-19.e8. doi: 10.1053/j.gastro.2015.04.018. Epub 2015 Apr 25.

引用本文的文献

1
Three-Dimensional Fractal Analysis of the Interstitial Cells of Cajal Networks of Gastrointestinal Tissue Specimens.
Cell Mol Bioeng. 2023 Nov 27;17(1):67-81. doi: 10.1007/s12195-023-00789-5. eCollection 2024 Feb.
2
Serotonergic Control of Gastrointestinal Development, Motility, and Inflammation.
Compr Physiol. 2023 Jun 26;13(3):4851-4868. doi: 10.1002/cphy.c220024.
3
Engaging biological oscillators through second messenger pathways permits emergence of a robust gastric slow-wave during peristalsis.
PLoS Comput Biol. 2021 Dec 6;17(12):e1009644. doi: 10.1371/journal.pcbi.1009644. eCollection 2021 Dec.
5
Polygonally Meshed Dipole Model Simulation of the Electrical Field Produced by the Stomach and Intestines.
Comput Math Methods Med. 2020 Oct 21;2020:2971358. doi: 10.1155/2020/2971358. eCollection 2020.
6
Current applications of mathematical models of the interstitial cells of Cajal in the gastrointestinal tract.
WIREs Mech Dis. 2021 Mar;13(2):e1507. doi: 10.1002/wsbm.1507. Epub 2020 Oct 7.
7
Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities.
Front Physiol. 2018 Jan 15;8:1136. doi: 10.3389/fphys.2017.01136. eCollection 2017.
8
Effects of Synbiotic2000™ Forte on the Intestinal Motility and Interstitial Cells of Cajal in TBI Mouse Model.
Probiotics Antimicrob Proteins. 2017 Jun;9(2):172-181. doi: 10.1007/s12602-017-9266-x.
9
Serotonergic Mechanisms Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance.
Handb Exp Pharmacol. 2017;239:319-342. doi: 10.1007/164_2016_103.
10
Tissue specific simulations of interstitial cells of cajal networks using unstructured meshes.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:8062-5. doi: 10.1109/EMBC.2015.7320264.

本文引用的文献

1
Lack of serotonin 5-HT2B receptor alters proliferation and network volume of interstitial cells of Cajal in vivo.
Neurogastroenterol Motil. 2010 Apr;22(4):462-9, e109-10. doi: 10.1111/j.1365-2982.2009.01435.x. Epub 2009 Nov 26.
2
Effects of electrical stimulation on isolated rodent gastric smooth muscle cells evaluated via a joint computational simulation and experimental approach.
Am J Physiol Gastrointest Liver Physiol. 2009 Oct;297(4):G672-80. doi: 10.1152/ajpgi.00149.2009. Epub 2009 Aug 6.
3
A tissue framework for simulating the effects of gastric electrical stimulation and in vivo validation.
IEEE Trans Biomed Eng. 2009 Dec;56(12):2755-61. doi: 10.1109/TBME.2009.2027690. Epub 2009 Jul 28.
5
A tissue-specific model of reentry in the right atrial appendage.
J Cardiovasc Electrophysiol. 2009 Jun;20(6):675-84. doi: 10.1111/j.1540-8167.2008.01420.x. Epub 2009 Feb 2.
6
Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias.
Gastroenterology. 2008 Nov;135(5):1601-11. doi: 10.1053/j.gastro.2008.07.020. Epub 2008 Jul 22.
7
Interstitial cells of Cajal in health and disease.
Neurogastroenterol Motil. 2008 May;20 Suppl 1:54-63. doi: 10.1111/j.1365-2982.2008.01109.x.
8
A biophysically based mathematical model of unitary potential activity in interstitial cells of Cajal.
Biophys J. 2008 Jul;95(1):88-104. doi: 10.1529/biophysj.107.122507. Epub 2008 Mar 13.
9
Quantitative cellular description of gastric slow wave activity.
Am J Physiol Gastrointest Liver Physiol. 2008 Apr;294(4):G989-95. doi: 10.1152/ajpgi.00528.2007. Epub 2008 Feb 14.
10
Interstitial cells of Cajal in diabetic gastroenteropathy.
Neurogastroenterol Motil. 2008 Jan;20(1):8-18. doi: 10.1111/j.1365-2982.2007.01056.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验