Suppr超能文献

基于 GPU 的快速锥形束 CT 重建:从欠采样和噪声投影数据中通过全变差方法。

GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation.

出版信息

Med Phys. 2010 Apr;37(4):1757-60. doi: 10.1118/1.3371691.

Abstract

PURPOSE

Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersampled and noisy projection data so as to lower the imaging dose.

METHODS

The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. The authors developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multigrid technique is also employed.

RESULTS

It is found that 20-40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 s on an NVIDIA Tesla C1060 (NVIDIA, Santa Clara, CA) GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studies indicate that the algorithm enables the CBCT to be reconstructed under a scanning protocol with as low as 0.1 mA s/projection. Comparing with currently widely used full-fan head and neck scanning protocol of approximately 360 projections with 0.4 mA s/projection, it is estimated that an overall 36-72 times dose reduction has been achieved in our fast CBCT reconstruction algorithm.

CONCLUSIONS

This work indicates that the developed GPU-based CBCT reconstruction algorithm is capable of lowering imaging dose considerably. The high computation efficiency in this algorithm makes the iterative CBCT reconstruction approach applicable in real clinical environments.

摘要

目的

锥形束 CT(CBCT)在图像引导放射治疗(IGRT)中起着重要作用。然而,在大多数 IGRT 程序中,由于连续的 CBCT 扫描会产生大量辐射剂量,这引起了临床关注,尤其是对于儿科患者,他们基本上因此被排除在接受 IGRT 之外。这项工作的目的是开发一种基于 GPU 的快速算法,以便从欠采样和噪声投影数据中重建 CBCT,从而降低成像剂量。

方法

通过最小化由数据保真项和全变差正则化项组成的能量泛函来重建 CBCT。作者开发了一种 GPU 友好的正向-反向分裂算法版本来求解该模型。还采用了多网格技术。

结果

研究发现,对于 IGRT,使用 20-40 个 X 射线投影就足以重建出具有令人满意质量的图像。重建时间取决于使用的投影数量,在 NVIDIA Tesla C1060(NVIDIA,圣克拉拉,CA)GPU 卡上的范围为 77 到 130 秒,这估计比类似的迭代重建方法快 100 倍左右。此外,体模研究表明,该算法可在扫描协议下重建 CBCT,该协议的每个投影的剂量低至 0.1 mAs。与目前广泛使用的全扇头部和颈部扫描协议(约 360 个投影,每个投影 0.4 mAs)相比,预计在我们的快速 CBCT 重建算法中,总剂量已降低了 36-72 倍。

结论

这项工作表明,所开发的基于 GPU 的 CBCT 重建算法能够显著降低成像剂量。该算法具有很高的计算效率,使得迭代 CBCT 重建方法适用于实际的临床环境。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验