Suppr超能文献

计算机辅助的漫射光学乳腺成像中恶性病变的自动检测。

Computer aided automatic detection of malignant lesions in diffuse optical mammography.

机构信息

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

Med Phys. 2010 Apr;37(4):1840-9. doi: 10.1118/1.3314075.

Abstract

PURPOSE

Computer aided detection (CAD) data analysis procedures are introduced and applied to derive composite diffuse optical tomography (DOT) signatures of malignancy in human breast tissue. In contrast to previous optical mammography analysis schemes, the new statistical approach utilizes optical property distributions across multiple subjects and across the many voxels of each subject. The methodology is tested in a population of 35 biopsy-confirmed malignant lesions.

METHODS

DOT CAD employs multiparameter, multivoxel, multisubject measurements to derive a simple function that transforms DOT images of tissue chromophores and scattering into a probability of malignancy tomogram. The formalism incorporates both intrasubject spatial heterogeneity and intersubject distributions of physiological properties derived from a population of cancercontaining breasts (the training set). A weighted combination of physiological parameters from the training set define a malignancy parameter (M), with the weighting factors optimized by logistic regression to separate training-set cancer voxels from training-set healthy voxels. The utility of M is examined, employing 3D DOT images from an additional subjects (the test set).

RESULTS

Initial results confirm that the automated technique can produce tomograms that distinguish healthy from malignant tissue. When compared to a gold standard tissue segmentation, this protocol produced an average true positive rate (sensitivity) of 89% and a true negative rate (specificity) of 94% using an empirically chosen probability threshold.

CONCLUSIONS

This study suggests that the automated multisubject, multivoxel, multiparameter statistical analysis of diffuse optical data is potentially quite useful, producing tomograms that distinguish healthy from malignant tissue. This type of data analysis may also prove useful for suppression of image artifacts.

摘要

目的

介绍并应用计算机辅助检测 (CAD) 数据分析程序,以得出人类乳腺组织恶性肿瘤的复合漫射光学层析成像 (DOT) 特征。与先前的光学乳腺成像分析方案不同,新的统计方法利用了多个受试者的光学特性分布和每个受试者的许多体素。该方法在 35 个经活检证实的恶性病变患者群体中进行了测试。

方法

DOT CAD 采用多参数、多体素、多受试者测量来推导出一个简单的函数,该函数将组织色团和散射的 DOT 图像转换为恶性肿瘤断层概率图像。该形式主义结合了来自包含癌症的乳腺群体(训练集)的受试者内空间异质性和生理特性的受试者间分布。来自训练集的生理参数的加权组合定义了恶性参数 (M),权重因子通过逻辑回归进行优化,以将训练集癌症体素与训练集健康体素区分开来。通过对附加受试者(测试集)的 3D DOT 图像进行检查,来研究 M 的实用性。

结果

初步结果证实,自动技术可以生成能够区分健康组织和恶性组织的断层图像。与组织分割的金标准相比,该方案使用经验选择的概率阈值产生了 89%的平均真阳性率(灵敏度)和 94%的真阴性率(特异性)。

结论

本研究表明,对漫射光学数据进行自动化的多受试者、多体素、多参数统计分析具有很大的潜力,可生成能够区分健康组织和恶性组织的断层图像。这种数据分析方法也可能对抑制图像伪影很有用。

相似文献

3
Bilateral analysis based false positive reduction for computer-aided mass detection.
Med Phys. 2007 Aug;34(8):3334-44. doi: 10.1118/1.2756612.
6
Comparison of diffuse optical tomography, ultrasound elastography and mammography in the diagnosis of breast tumors.
Ultrasound Med Biol. 2014 Jan;40(1):1-10. doi: 10.1016/j.ultrasmedbio.2013.09.008. Epub 2013 Nov 7.
10
Performance of computer-aided detection applied to full-field digital mammography in detection of breast cancers.
Eur J Radiol. 2011 Mar;77(3):457-61. doi: 10.1016/j.ejrad.2009.08.024. Epub 2009 Oct 28.

引用本文的文献

1
Prediction of the response to antiangiogenic sunitinib therapy by non-invasive hybrid diffuse optics in renal cell carcinoma.
Biomed Opt Express. 2024 Sep 6;15(10):5773-5789. doi: 10.1364/BOE.532052. eCollection 2024 Oct 1.
3
Convolutional neural network for breast cancer diagnosis using diffuse optical tomography.
Vis Comput Ind Biomed Art. 2019 May 8;2(1):1. doi: 10.1186/s42492-019-0012-y.
6
Near-Infrared Visual Differentiation in Normal and Abnormal Breast Using Hemoglobin Concentrations.
J Lasers Med Sci. 2018 Winter;9(1):50-57. doi: 10.15171/jlms.2018.11. Epub 2017 Dec 26.
7
Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy.
Phys Med Biol. 2017 Jun 21;62(12):4637-4653. doi: 10.1088/1361-6560/aa6cef. Epub 2017 Apr 12.

本文引用的文献

3
Multiparameter classifications of optical tomographic images.
J Biomed Opt. 2008 Sep-Oct;13(5):050503. doi: 10.1117/1.2981806.
4
Automated breast cancer classification using near-infrared optical tomographic images.
J Biomed Opt. 2008 Jul-Aug;13(4):044001. doi: 10.1117/1.2956662.
5
Tutorial on diffuse light transport.
J Biomed Opt. 2008 Jul-Aug;13(4):041302. doi: 10.1117/1.2967535.
6
In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy.
Phys Med Biol. 2008 Dec 7;53(23):6713-27. doi: 10.1088/0031-9155/53/23/005. Epub 2008 Nov 7.
7
Model based and empirical spectral analysis for the diagnosis of breast cancer.
Opt Express. 2008 Sep 15;16(19):14961-78. doi: 10.1364/oe.16.014961.
9
Imaging complex structures with diffuse light.
Opt Express. 2008 Mar 31;16(7):5048-60. doi: 10.1364/oe.16.005048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验