Department of Chemistry and Biochemistry, University of Arizona, Tucson, 85721, USA.
Anal Biochem. 2010 Sep 1;404(1):40-4. doi: 10.1016/j.ab.2010.04.035. Epub 2010 May 4.
The fragmentation patterns of various (13)C-labeled glucose molecules were analyzed by electrospray ionization tandem mass spectrometry. Derivatization of glucose to yield methylglucosamine makes the C-C bond between C1 and C2 a favored cleavage site. This is in contrast to underivatized glucose, which favorably undergoes loss of a fragment containing both C1 and C2. Based on the fragmentation pattern of methylglucoasmine, we developed a method to distinguish and quantify C1 and C2 (13)C-labeled glucose by derivatization with methylamine followed by multiple reaction monitoring scans in a Q-trap mass spectrometer. Fragment ion ratios in the tandem mass spectra showed an isotope effect with (13)C or deuterium labeling, so a "correction factor" was introduced to make the quantification more accurate. The current approach can be applied to individually monitor the metabolic origin and fate of C1 and C2 atoms in (13)C-labeled glucose. This method provides a new means of quantifying glucose isotopomers in metabolic studies.
通过电喷雾串联质谱分析了各种(13)C 标记的葡萄糖分子的碎片模式。将葡萄糖衍生化为甲基葡糖胺,使 C1 和 C2 之间的 C-C 键成为有利的裂解位点。这与未衍生化的葡萄糖形成对比,后者有利于失去含有 C1 和 C2 的片段。基于甲基葡糖胺的裂解模式,我们开发了一种方法,通过用甲胺衍生化,然后在 Q-阱质谱仪中进行多重反应监测扫描,来区分和定量 C1 和 C2(13)C 标记的葡萄糖。串联质谱中的碎片离子比显示出与(13)C 或氘标记的同位素效应,因此引入了“校正因子”以使定量更准确。目前的方法可用于单独监测(13)C 标记葡萄糖中 C1 和 C2 原子的代谢来源和命运。该方法为代谢研究中定量葡萄糖同量异位体提供了一种新手段。