Suppr超能文献

神经网络预测有早孕出血的早产。

Neural networks prediction of preterm delivery with first trimester bleeding.

机构信息

Department of Obstetrics and Gynecology, CSI Rainy Multispecialty Hospital, Chennai, India.

出版信息

Arch Gynecol Obstet. 2011 May;283(5):971-9. doi: 10.1007/s00404-010-1469-2. Epub 2010 May 7.

Abstract

OBJECTIVE

This paper illustrates a retrospective study of the outcome of those pregnancies that continued from an initial episode of bleeding in first trimester.

METHODS

Neural networks is used for the prediction of preterm delivery, using various inputs such as the age of women, gestational age when the bleeding occurred, duration of the bleeding days, amount of bleeding, number of episodes, presence or absence of hematoma and placentation position.

RESULTS

The success rate of prediction obtained using the feed forward backpropogation network is 70%. Hence, this model can be used to identify women at the risk of premature delivery for planning antenatal care and clinical interventions in pregnancy.

摘要

目的

本文通过回顾性研究,阐述了在首次出现孕早期出血的情况下继续妊娠的结局。

方法

采用神经网络方法,根据产妇年龄、出血时的孕周、出血天数、出血量、出血次数、是否存在血肿以及胎盘位置等多种因素,对早产进行预测。

结果

采用前馈反向传播网络的预测成功率为 70%。因此,该模型可用于识别有早产风险的女性,以便为其提供产前护理和妊娠干预计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验