William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA.
Nano Lett. 2010 Jun 9;10(6):2220-4. doi: 10.1021/nl1011855.
Controlled transport of multiple individual nanostructures is crucial for nanoassembly and nanodelivery but is challenging because of small particle size. Although atomic force microscopy and optical and magnetic tweezers can control single particles, it is extremely difficult to scale these technologies for multiple structures. Here, we demonstrate a "nano-conveyer-belt" technology that permits simultaneous transport and tracking of multiple individual nanospecies in a selected direction. The technology consists of two components: nanocontainers, which encapsulate the nanomaterials transported, and nanoconveyer arrays, which use magnetic force to manipulate individual or aggregate nanocontainers. This technology is extremely versatile. For example, nanocontainers encapsulate quantum dots or rods and superparamagnetic iron oxide nanoparticles in <100 nm nanocontainers, the smallest magnetic composites to have been simultaneously moved and optically tracked. Similarly, the nanoconveyers consist of patterned microdisks or zigzag nanowires, whose dimensions can be controlled through micropatterning. The nanoconveyer belt technology could impact multiple fields, including nanoassembly, biomechanics, nanomedicine, and nanofluidics.
对多个单个纳米结构进行控制传输对于纳米组装和纳米输送至关重要,但由于颗粒尺寸小,因此具有挑战性。尽管原子力显微镜和光学及磁镊可以控制单个颗粒,但将这些技术扩展到多个结构极其困难。在这里,我们展示了一种“纳米输送带”技术,该技术可在选定方向上同时传输和跟踪多个单个纳米物种。该技术由两部分组成:纳米容器,用于封装运输的纳米材料,以及纳米输送带阵列,它使用磁力来操纵单个或聚合的纳米容器。这项技术用途非常广泛。例如,纳米容器将量子点或棒和超顺磁性氧化铁纳米颗粒封装在 <100nm 的纳米容器中,这是迄今为止同时移动和光学跟踪的最小磁性复合材料。同样,纳米输送带由图案化的微盘或之字形纳米线组成,其尺寸可以通过微图案化来控制。纳米输送带技术可能会影响多个领域,包括纳米组装、生物力学、纳米医学和纳流控。